
Decoupling Control System
Components Using Asynchronous

Publish/Subscribe Middleware

Narrow
Interface, API

Download at ftp://ftp.jlab.org/pub/coda/cMsg

Function Description
connect(UDL, myName) Connect to a cMsg system specified by the UDL for

client myName
disconnect() Disconnect from the cMsg system

send(msg) Send a message asynchronously

flush(timeout) Flush messages to send from client

syncSend(msg, timeout) Send a message and wait for server response

sendAndGet(msg, timeout) Send a message and wait for receiving client to
send a response

subscribe(subject, type, callback) Subscribe to messages of a given subject & type,
registering a callback for incoming messages

unsubscribe() Remove a subscription

subscribeAndGet(subject, type, timeout) Subscribe to a subject & type and wait for one
response

start() Start receiving messages

stop() Stop receiving messages

monitor(command) Synchronous call to request monitoring information

cMsg unifies
communication under
a single, message-
passing API (Java, C,
C++). This table
contains a simplified
list of the major client
functions in Java. The
messages can contain
unlimited user-
settable fields
including strings,
primitive types, cMsg
messages, binary and
arrays of each.

Introduction
cMsg is a full-featured message-based publish/subscribe IPC system. Using this publish-subscribe

software, control system components can be completely decoupled from each other. When each component
does NOT depend on any other process (either its presence or behavior) then fully decoupling is achieved.

Elliott Wolin, Carl Timmer, D Abbott, W Gu, V Gyurjyan, G Heyes, E Jastrzembski, D Lawrence, and B Moffitt

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

What is Decoupling ?
Communication Type:
Ø Uses communication which is asynchronous in nature, eliminating needless waits and
timeouts
ØThe ability to asynchronously publish and subscribe independent of the existence of
other producers and consumers is key to implementing the decoupling

Control System Modification:
Ø Changes to one part of a control system have no effect on other parts of the system
Ø Functionality can be added incrementally, with no disruption to existing systems
ØSystem designers can implement basic interprocess communications between
processes, then at a later date transparently add more consumers implementing new
functionality, with no disturbance to the original system
ØFor example, at a later date a logger process could be activated that subscribes to the
same subjects used by other processes and logs all the communications between them to
disk or database, with no disruption to the original system).

What is Publish/Subscribe ?
Message producers:
Ø Publish or send messages to abstract subjects (strings)
Ø Publish to any subject at any time, independent of others
Ø No knowledge of consumers and their subscriptions necessary
Ø May publish to a subject no consumer subscribes to
Ø No prior registration of subjects required
Ø Subjects can be created dynamically, at will
Ø No connection or “coupling” of a subject to a producer process
Ø Publish messages at will in a “publish-and-forget” mode

Message consumers:
Ø Subscribe to subjects (strings), wildcards often supported
Ø No knowledge of producers and the subjects they publish to required
Ø May subscribe to a subject that no producer ever publishes to
Ø Operate in a “subscribe-and-forget” mode

Asynchronous communication:
Ø Producers do not block when a message is published
Ø Producers do not have to wait for some process to receive it
Ø Consumers receive messages via an asynchronous callback mechanism, running in a separate
thread
Ø Consumers do not block when the subscription is made

Conclusions
The asynchronous publish/subscribe model is ideal for implementing a decoupled interprocess communication system. Producers can publish messages to any subject with no regard for the
existence of other producers or consumers. Consumers can subscribe to any subject with no regard for the existence of other consumers or producers. New consumers can be added to
implement additional functionality with no change needed to the existing system.
The cMsg package implements a narrow interface that has changed hardly at all over five years. It provides basic messaging functionality, and all additional customization must be done by
developers via conventions in the controls system.
We have often created simple systems to implement some basic functionality, then added new functionality via new processes that listen in on the existing messaging and perform some new
task (e.g. archiving or display), with no change to the original system needed. In this way functionality can be built up incrementally and transparently, and modified as needed with no effect
on existing systems.

What is cMsg and how does it decouple?
What is cMsg?:
ØSoftware implementing a sophisticated version of the publish/subscribe model and thus
automatically decouples users

Some cMsg Features:
Ø2 subject fields (subject & type) used in publishing & subscribing
ØMessages hold all fundamental data types, their arrays, as well as cMsg messages and their
arrays – as many components as desired
ØEndian conversions are handled automatically (except for binary)
ØMessage routing is performed by high-performance background servers(written in Java).
Servers can be grouped together into “clouds” which implement hot server failover and
least-hop routing.
ØRuns on Linux, Solaris, other flavours of Unix, and VxWorks
ØThe underlying transport mechanism could be replaced or modified transparently, with no
modifications to user code needed
ØMonitoring capabilities exist to supply complete information on all servers, producers, and
consumers.

cMsg API:
ØAvailable in C, C++ and Java
ØSimple as possible; no IDL or stub generators needed
ØThe API is narrow in that only basic messaging functionality is provided, i.e. there is only
one type of message and one way to fill, publish, subscribe, and receive messages
ØAdditional useful synchronous capabilities are provided for convenience.

CAPTION HERE

CAPTION HERE

