
JEFFERSON LAB

Data Acquisition Group

EVIO User’s Guide

Version

4.0

J E F F E R S O N L A B D A T A A C Q U I S I T I O N G R O U P

EVIO User’s Guide

Elliott Wolin

wolin@jlab.org

Carl Timmer

timmer@jlab.org

1-Aug-2012

mailto:wolin@jlab.org
timmer@jlab.org

ii

 Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave

Newport News, VA 23606
Phone 757.269.7365 • Fax 757.269.6248

Table of Contents

1. Introduction .. 5

1.1. Evio Version 1 ... 5

1.2. Evio Versions 2 & 3 .. 5

1.3. Evio Version 4 ... 6

1.3.1. File Format Block Size ... 6

1.3.2. Network Communication Format ... 6

1.3.3. Expanded User Interface .. 6

1.3.4. Dictionary ... 6

1.3.5. Padding ... 6

1.3.6. Data Formats .. 7

1.3.7. Random Access ... 7

1.3.8. Append Mode .. 7

2. Basics of the C Library .. 8

2.1. Starting to use Evio ... 8

2.2. Reading events ... 8

2.3. Controlling I/O through evIoctl() .. 9

2.4. Writing events .. 10

2.5. Network Communication Format .. 10

2.6. Dictionary .. 10

2.7. Data Formats... 11

2.8. Documentation .. 11

3. Basics of the C++ Library ... 12

3.1. evioChannel ... 12

3.2. evioFileChannel .. 12

3.3. evioEtChannel ... 12

3.4. evioCMSGChannel .. 13

4. EVIO Stream Parser ... 14

4.1. in C .. 14

3

4.2. In C++ ... 15

5. EVIO DOM Parser and DOM Trees .. 17

5.1. evioDOMNode ... 17

5.1.1. getChildList() .. 18

5.1.2. geVector<T>() .. 18

5.2. evioDOMTree .. 18

5.2.1. Manual evioDOMTree construction ... 18

5.2.2. Modification of existing trees.. 19

6. Utilities .. 20

6.1. evio2xml ... 20

6.2. xml2evio ... 21

6.3. eviocopy ... 21

7. C++ Tutorial ... 22

7.1. Simple event I/O .. 22

7.2. Querying the event tree .. 23

7.3. Manipulation of the event tree .. 25

7.4. Example programs ... 26

7.5. Advanced topics ... 26

8. Jevio (Java Evio) .. 27

8.1. Building ... 27

8.2. Documentation .. 27

8.3. Basics... 28

8.4. Event Creating ... 28

8.5. Writing ... 29

8.6. Reading .. 31

8.7. Searching ... 33

8.8. Parsing .. 34

8.9. Transforming ... 35

8.10. Dictionaries .. 35

A. Evio File Format .. 38

A.1 Old Format, Evio Versions 1-3 .. 38

A.2 New Format, Evio Version 4 .. 39

B. EVIO Data Format .. 41

B.1 Bank Structures & Content .. 41

B.2 Changes From Previous Versions ... 42

4

B.3 Composite Data Type .. 43

C. EVIO Dictionary Format .. 46

C.1 Evio versions 2 & 3 ... 46

C.1.1 Jevio problems .. 47

C.1.2 C++ Evio problems .. 47

C.2 Evio version 4 .. 47

C.2.1 Changes .. Error! Bookmark not defined.

C.2.2 Behaviors .. 49

C.2.3 Differences between C++ and Java ... 50

D. EVIO Function Objects ... 51

E. Revision History ... 52

INTRODUCTION

5

1. Introduction

1.1. Evio Version 1

Version 1 of the CODA EVIO package, written in C, has been in use at Jefferson Lab for

over a decade. It has seen extensive use in Halls A and C, where the raw data is written

to disk in EVIO format, and has seen limited use in the Hall B, where PRIMEX and the

GlueX BCAL test stored their raw data in EVIO format (CLAS stores raw data in

BOS/FPACK format).

1.2. Evio Versions 2 & 3

In the past couple of years, in EVIO versions 2 and 3 (no difference between them), the

JLab DAQ group upgraded and extended the EVIO package to meet some additional

needs. First added were XML conversion and other utilities, support for all 1, 2, 4, and 8-

byte data types, addition of a new TAGSEGMENT bank type, support for gzipped files

and pipes (courtesy of Steve Wood), elimination of obsolete data types, as well as a

number of bug fixes and performance enhancements.

With the advent of object-orientation and C++ the DAQ group achieved a major upgrade

to the EVIO package beyond simple wrapping of existing C code in C++. Since an EVIO

event maps to a directed acyclic graph or tree, a fact which allowed us to write the XML

conversion utilities, we based the object-oriented extension on the XML notion of stream

and Document Object Model (DOM) parsing and DOM trees. Note that banks in an

EVIO event can either be container nodes or leaf nodes, i.e. they can contain either other

banks OR data, but not both (unlike XML, where a node can contain both data AND

other nodes).

The object-oriented extension to EVIO described below builds upon the modern C++

standard, and makes liberal use of templates and the Standard Template Library (STL)

(i.e. containers, iterators, algorithms, function objects, function object adaptors, smart

pointers, etc). Fortunately users need only be familiar with a small subset of these, and

examples in the tutorial below show how to do the most common tasks. However,

advanced users of the EVIO package should be able to take full advantage of the STL.

Section

1

INTRODUCTION

6

Note that the object-oriented features build upon the existing C library, and except as

noted the C library continues to work as before. On the Java front, the DAQ group

adopted, extended, and supports Dave Heddle's jevio package.

1.3. Evio Version 4

This brings us to EVIO version 4 which can be found at http://coda.jlab.org under

"Downloads". The following outlines the major changes that were made.

1.3.1. File Format Block Size

In previous versions, the EVIO file format had fixed-size blocks generally set to 8192 32-

bit ints (32768 bytes) including a block header. EVIO banks were often split across one

or more blocks. This was largely done for error recovery when using tape storage.

In version 4, since tape storage considerations are now irrelevant, each block contains an

integral number of events. Users can set the nominal block size or events/block. Writing

will not exceed the given limit on events/block, but each block may contain significantly

less events depending on their size. The nominal block size will be exceeded in the case

that a single event larger than that size is written.

1.3.2. Network Communication Format

In order to unify file and network communications, the new file format is used for both.

The C library has evOpenBuffer and evOpenSocket routines to complement the

traditional evOpen and allows reading and writing with buffers and TCP sockets.

1.3.3. Expanded User Interface

The C library contains several new read routines which differ in their memory handling.

Options for the routine evIoctl have been expanded. Routines for dictionary handling and

other purposes have been added as well.

1.3.4. Dictionary

An xml format dictionary can be seamlessly included as the first bank of a file/network

format.

1.3.5. Padding

When using 1 and 2 byte data sizes (short, unsigned short, char, and unsigned char) in

previous EVIO versions, there was some ambiguity. Because EVIO format dictates each

bank, segment, or tagsegment must be an integral number of 32-bit ints in length,

ftp://ftp.jlab.org/pub/coda/evio/2.0

INTRODUCTION

7

specifying an odd number of shorts or non-multiple of 4 number of chars meant there

were extra, unused shorts or chars that the user had to keep track of externally.

In version 4, with banks and segments (not tagsegments), these unused shorts/chars or

padding are tracked in the header by using the 2 highest bits of the content type. Padding

can be 0 or 2 bytes for shorts and 0-3 bytes for chars. All padding operations are

completely transparent to the user.

1.3.6. Data Formats

There is a new data format called composite data which is used by Hall B. In a nutshell it

consists of a string which describes the format of the data - allowing data of mixed types

to be stored together - and is followed by the data itself.

1.3.7. Random Access

There is a read routine which will read a particular event (say #347) directly instead of

having to read the previous (346) events.

1.3.8. Append Mode

There is now a writing mode which will append data to the end of an existing file.

BASICS OF THE C LIBRARY

8

2. Basics of the C Library

EVIO bank structures and content type codes are described in Appendix C. There have

been a large number of changes to the EVIO C library. Minor, non-functional changes

include the following

 bug fixes

 support for gzipped files was removed

 doxygen documentation (like javadoc for C/C++) has been added

2.1. Starting to use Evio

The first thing a user must do is to "open" evio and obtain a handle to be used as an

argument for all other evio functions. There are now 3 possibilities in the 3 open routines:

1) int evOpen(char *filename, char *flags, int *handle)

2) int evOpenBuffer(char *buffer, int bufLen, char *flags, int *handle)

3) int evOpenSocket(int sockFd, char *flags, int *handle)

The first routine is for opening a file. The "flags" argument can "w" for writing, "r" for

reading, "a" for appending, or "ra" for random access. Both the appending and random

access modes are new in this version of evio and are not backwards compatible. Writing a

file will overwrite any existing data, while appending will add an new events to the end

of a file. Reading a file will allow access to each event in the order in which it exists in

the file - in other words, it is a sequential access to the events. The random access mode,

on the other hand, does a preliminary scan of the file and allows reading (not writing) of

selected events no matter where they are in sequence.

The second routine is for opening a buffer. It takes a pointer to a buffer as well as its

length in words (32 bit ints) as the first 2 arguments. The "flags" argument is the same as

for evOpen() as discussed in the previous paragraph.

The third is for opening evio with a TCP socket. The first argument is the socket file

descriptor of a TCP socket which was created elsewhere. The "flags" argument in this

case can only be "w" for writing, "r" for reading since appending or random access makes

no sense when talking about a stream-oriented medium.

2.2. Reading events

There are now 4 routines to read events instead of the previous one.

1) int evRead(int handle, uint32_t *buffer, size_t buflen)

Section

2

BASICS OF THE C LIBRARY

9

2) int evReadAlloc(int handle, uint32_t **buffer, uint64_t *buflen)

3) int evReadNoCopy(int handle, const uint32_t **buffer, uint64_t *buflen)

4) int evReadRandom(int handle, const uint32_t **pEvent, size_t eventNumber)

The first is the original read routine which reads an event into a user-given buffer. Its

main problem is that the caller does not generally know the size of the event before

reading it and therefore the supplied buffer may be too small - resulting in an error.

The second reads an event, allocating all the memory necessary to hold it with the caller

responsible for freeing that memory.

The way evio works internally is that a file/buffer/socket is read one block at a time into

an internal buffer. The third routine simply returns a pointer to the next event residing in

the internal buffer - so no memory allocation or copying is done. If the data needs to be

swapped, it is swapped in place. Any other calls to read routines will cause the data to be

overwritten if a new block needs to be read in. Of course, no writing to the returned

pointer is allowed.

Finally, the last read routine works like the 3rd read routine described in the previous

paragraph in which a pointer to an internal buffer is returned to the caller. It is valid only

when evio has been opened in random access mode and allows the caller to read only the

event of interest instead of all previous events as well.

2.3. Controlling I/O through evIoctl()

In previous versions, the EVIO data format had fixed-size blocks generally set to 8192

32-bit ints (32768 bytes) which included a block header generally set to 32 bytes (could

theoretically be larger). EVIO banks were often split across one or more blocks. This was

largely done for error recovery when using tape storage.

In version 4, since tape storage considerations are now irrelevant, each block contains an

integral number of events. Users can set the nominal block size and/or the number of

events per block. Writing events will not exceed the given limit on events/block, but each

block may contain significantly less events depending on their size. The nominal block

size will be exceeded only in the case that a single event is larger than that.

The evIoctl() routine, shown below,

int evIoctl(int handle, char *request, void *argp)

can be used to change the target block size for writes if request = "B" (case insensitive).

In this case, argp points to a 32-bit int filled with the number of 32-bit words to set the

block size to. If setting block size fails, writes can still continue with original block size

value. The minimum size is 1K + 8(header) words. The routine can also change the

maximum number of events/block if request = "N" and argp points to a 32-bit int filled

with the number desired.

It can obtain the total number of events in a file or buffer opened for reading or writing if

request = "E". This includes any event written by calling evWrite() (which still may be

contained in an internal buffer and not yet actually written out to the file/buffer). Note

BASICS OF THE C LIBRARY

10

that this option returns an unsigned 64-bit int so make sure the argp points to an int of

that size or you'll inadvertently overwrite sections of your code.

This routine can obtain a pointer to allocated memory containing the most recently read

block header if request = "H". The size of the memory is EV_HDSIZ number of 32-bit

ints and the pointer to the memory is obtained by passing its address in argp. This pointer

must be freed by the caller to avoid a memory leak.

As in previous versions, it returns the evio version number in the argp pointer to a 32-bit

int if request = "V". All request strings are case insensitive. All version 4 commands to

version 3 format files are ignored.

2.4. Writing events

As in previous versions there is only 1 write routine simply because the C library will

only write in the new format, so no changes here:

int evWrite(int handle, const uint32_t *buffer)

However, there is a complication when writing to a buffer that one does not run into

when writing to a file or socket. Unlike a file which grows as one writes or a socket that

will take any amount of data, the buffer, that the caller provides to contain what is

written, is of fixed size. Thus it is convenient to keep track of how much has already been

written, before continuing to write more. This can be done through the following new

routine:

int evGetBufferLength(int handle, uint64_t *length)

This routine returns the number of bytes currently written into a buffer when given a

handle provided by calling evOpenBuffer(). After the handle is closed, this no longer

returns anything valid.

2.5. Network Communication Format

In order to unify file and network communications, the new file format is used for both.

The C library has evOpenBuffer and evOpenSocket routines to complement the

traditional evOpen and allows reading and writing with buffers and TCP sockets.

2.6. Dictionary

An xml format dictionary can be seamlessly included as the first event when writing

events to a file, buffer, or network. Refer to Appendix D for details on the format of a

dictionary. To write a dictionary, simply call the following routine

int evWriteDictionary(int handle, char *xmlDictionary)

before writing any events and it will be seemlessly included as the first event in the first

block. If events have already been written, an error will be returned. When reading

events, simply call the following routine to get the dictionary, as a string, if it was

defined:

int evGetDictionary(int handle, char **dictionary, int *len)

BASICS OF THE C LIBRARY

11

2.7. Data Formats

There is a new data format called composite data which is used by Hall B. In a nutshell it

consists of an evio format string which describes the format of the data - allowing data of

mixed types to be stored together - and is followed by the data itself.

2.8. Documentation

Besides the document you are now reading, there are doxygen docs which are essentially

javadoc web pages for C/C++ code. To those unfamiliar with doxygen, programmers

include specially formatted comments in the code itself which is extracted by the

doxygen program and formed into web pages for view with a web browser. The user

must generate these web pages by going to the top level of the evio distribution and

typing either "make doc" or "scons doc". Then simply view the

doc/doxygen/html/index.html file in a browser.

BASICS OF THE C++ LIBRARY

12

3. Basics of the C++ Library

Important: all symbols in the EVIO C++ library reside in the “evio” namespace.

3.1. evioChannel

The foundation for I/O in the C++ object-oriented version of EVIO is the notion of an

EVIO channel, an abstract or pure virtual class that includes the methods open(), read(),

write(), and close(). Real or concrete channels extend the evioChannel class and use their

constructors to supply information needed to access the underlying EVIO data stream.

There are three flavors of the write() method implementing output 1) from the internal

evioChannel buffer, 2) from a user-supplied buffer, and 3) from the internal buffer in

another evioChannel object. Additional methods include getBuffer() and getBufSize().

3.2. evioFileChannel

The evioFileChannel class is a subclass of evioChannel that implements I/O to and from

files or file-like entities (e.g. pipes). The constructor accepts a file name, an optional

mode string (default is “r”), and an optional internal buffer size (default is 8192

longwords). The internal buffer is allocated automatically. The ioctl() method can be

used to set the EVIO file block size in write mode (default is 8192 longwords), and must

be called immediately after the open() method (ioctl is ignored for read mode).

This class is little more than an object-oriented wrapper around the original C function

library. See the C++ tutorial for an example of how to use evioFileChannel, the C

Library API in Appendix A for additional information, or the Doxygen docs for full API

information.

3.3. evioEtChannel

The evioEtChannel class has not been written yet (Jan 2007…ejw). Its purpose is to

read/write EVIO events to and from ET systems.

Section

3

BASICS OF THE C++ LIBRARY

13

3.4. evioCMSGChannel

The evioCMSGChannel class has not been written yet (Jan 2007…ejw). Its purpose is to

read/write EVIO events to and from the cMsg system

.

EVIO STREAM PARSER

14

4. EVIO Stream Parser

Stream parsing an EVIO event involves making a single pass through the event and

dispatching to user-supplied callbacks as each new bank is reached. Two versions are

supplied, a C version and a C++ version.

In the C version the user supplies two callbacks to evio_stream_parse() along with a

pointer to the event buffer. evio_stream_parse() works its way through all the banks in

the event in order, calling the callbacks as each new node or bank is reached. One

callback is called when container banks (ones containing other banks, not data) are

reached, the other when leaf or data banks are reached.

In the C++ version the evioStreamParser constructor is given an evioChannel object

containing an event (e.g. an evioFileChannel object which obtained an event via its read()

method) and a user-written callback handler object. The latter implements two methods:

containerNodeHandler() and leafNodeHandler(). containerNodeHandler() is called when

a container node or bank is reached, and leafNodeHandler() is called when a leaf or data

node is reached.

In general, stream parsing may be useful for a quick pass through the data, but in C++

DOM parsing and DOM trees (see the next section) are the preferred ways to deal with

EVIO events in all but the simplest cases.

4.1. in C

To use evio_stream_parser():

#include “evio.h”

int handle;

unsigned int buffer[10000];

int buflen=10000;

/* open file */

status = evOpen(myFilename, “r”, &handle);

/* read events */

while(evRead(handle, buffer, buflen)==S_SUCCESS) {

Section

4

EVIO DOM PARSER AND DOM TREES

15

/* parse event and dispatch to callbacks */

evio_stream_parser(buffer, node_handler, leaf_handler);

}

/* close file */

evclose(handle);

where the node_handler callback is of type NH_TYPE, and the leaf_handler callback is

of type LH_TYPE (either can be NULL):

typedef void (*NH_TYPE)(int length, int ftype, int tag, int type,

 int num, int depth);

typedef void (*LH_TYPE)(void *data,

 int length, int ftype, int tag, int type,

 int num, int depth);

where length is the length of the contents of the bank, ftype is the type of bank (BANK,

SEGMENT, or TAGSEGMENT) , tag is the bank tag, type defines the content type of the

bank, num is defined only for the BANK type (set to 0 for SEGMENT and

TAGSEGMENT), depth is the level of the bank in the tree, and data is a pointer to the

array of data contained by the leaf bank (must be cast to appropriate type before

accessing data).

4.2. In C++

To use the evioStreamParser:

#include <evioUtil.hxx>

using namespace evio;

using namespace std;

int main(int argc, char **argv) {

 try {

 // create evio file channel object for reading, argv[1] is filename

 evioFileChannel chan(argv[1], “r”);

 // open the file

 chan.open();

 // create parser and node handler objects

 evioStreamParser parser;

 myHandler handler;

 // read events and parse channel internal buffer

 while(chan.read()) {

EVIO DOM PARSER AND DOM TREES

16

 parser.parse(chan.getBuffer(),handler,(void*)NULL);

 }

 // eof reached...close file

 chan.close();

 } catch (evioException e) {

 cerr << endl << e.toString() << endl << endl;

 exit(EXIT_FAILURE);

 }

 // done

 exit(EXIT_SUCCESS);

}

where:

class myHandler : public evioStreamParserHandler {

 void *containerNodeHandler(int length, unsigned short tag,

 int contentType, unsigned char num, int depth, void *userArg) {

 return(NULL);

 }

 void leafNodeHandler(int length, unsigned short tag, int contentType,

 unsigned char num, int depth, const void *data, void *userArg) {

 }

};

EVIO DOM PARSER AND DOM TREES

17

5. EVIO DOM Parser and DOM Trees

In analogy with XML DOM parsing, the EVIO DOM parser constructs an in-memory

object-oriented representation of an EVIO event. This in-memory representation is

stored as an instance of the evioDOMTree class. The evioDOMTree constructor can

automatically construct the tree based on an event contained in an evioChannel object

(e.g. an instance of evioFileChannel). Manual construction and modification of trees is

also possible.

The tree itself consists of a hierarchy of nodes of two types, container nodes and leaf

nodes. Container nodes hold lists of other nodes; leaf nodes contain vectors of data. Both

node types inherit from the abstract base class evioDOMNode. The top node in the tree

is called the root node. Note that the API is defined entirely by the evioDOMNode class,

and that user code never calls its sub-classes directly.

5.1. evioDOMNode

This is the abstract base class for the two concrete node types described above, and the

only class that users deal with directly. The evioDOMNode class contains a parent

pointer, parent tree pointer, tag, num, and content type. The latter three correspond to the

fields in EVIO bank headers in EVIO files. Legal content types are listed in Appendix C.

Nodes are created via static factory methods :

evioDOMNodeP evioDOMNode::createEvioDOMNode()

where evioDOMNodeP is a node pointer and all objects are created on the heap. Other

methods include toString(), which returns an XML fragment representing the node; bool

isContainer() and isLeaf(), and a few others described below. operator== and operator!=

are defined to compare tags if the argument is an integer, or tag and num if the argument

is a tagNum pair (see API docs).

Section

5

EVIO DOM PARSER AND DOM TREES

18

5.1.1. getChildList()

getChildList() returns a pointer to the child list of an evioDOMNode that actually is a

container node. NULL is returned if the node is a leaf node. See the tutorial for more

details.

5.1.2. geVector<T>()

getVector<T>() returns a pointer to the data vector contained in a leaf node of type T,

where T is one of the many supported data types (int, unsigned int, double, etc). NULL

is returned if the node is a container node, or if it is a leaf node containing a different

type. See the tutorial for more details.

5.2. evioDOMTree

This class represents the EVIO DOM tree or event in memory. It contains a pointer to

the evioDOMNode that forms the root of the tree (type is always BANK), and the name

of the tree (default is “evio”). It can construct a tree from an event contained in an

evioChannel object (see the tutorial). Manual construction of a tree is discussed below.

Methods include toString(), which returns an XML string representing the entire contents

of the tree, and getNodeList(Predicate P), which returns a (pointer to a) list of pointers to

all nodes in the tree satisfying the predicate P. See the C++ tutorial or the API docs for

details.

5.2.1. Manual evioDOMTree construction

Manual construction of an evioDOMTree might typically happen in a Monte Carlo

program that outputs simulated data. A root node must first be created, then it can be

filled with either data if it is a leaf node, or pointers to other evioDOMNode objects if it

is a container node. This process can be repeated recursively until a complete tree is

formed. Then e.g. the tree can be written to a file via use of the write() method of an

evioFileChannel object.

evioDOMTree constructors exist that can automatically create the root node.

Alternatively, you can create the root node yourself and supply it to the tree constructor

directly.

Nodes are created via the static factory methods evioDOMNode::createEvioDOMNode(),

and can be added to the root node (assuming it is a container) or other container nodes in

EVIO DOM PARSER AND DOM TREES

19

a variety of ways. See the tutorial for examples of how to create nodes, add nodes to the

child lists of container nodes, and add data to leaf nodes.

5.2.2. Modification of existing trees

Modification of an existing tree might typically happen in a reconstruction program that

first constructs an evioDOMTree from data read in by an evioFileChannel object, and

then adds additional reconstructed data to the tree before writing it out again. The

program might create one or more sub-trees containing the new data, then add the

subtrees to the child lists of container nodes in the original tree. Further, sub-trees of the

existing tree might be deleted by removing them from the child lists of container nodes,

or moved from one container node to another.

These operations are easily carried out via the evioDOMNode methods cut(),

cutAndDelete(), and move(). See the tutorial for details.

UTILITIES

20

6. Utilities

The utilities described below can be used to convert from binary EVIO to ASCII XML

format and back, and to selectively copy EVIO events from one binary file to another.

Below the term “event tag” refers to the tag of the outermost bank in an event, which is

always of type BANK (two-word header, includes num).

6.1. evio2xml

evio2xml is a flexible utility that reads a binary EVIO file and dumps selected events in

XML format to stdout or to a file:

$ evio2xml –h

 evio2xml [-max max_event] [-pause] [-skip skip_event]

 [-dict dictfilename]

 [-ev evtag] [-noev evtag] [-frag frag] [-nofrag frag]

 [-max_depth max_depth]

 [-n8 n8] [-n16 n16] [-n32 n32] [-n64 n64]

 [-w8 w8] [-w16 w16] [-w32 w32] [-w64 w64]

 [-verbose] [-xtod] [-m main_tag] [-e event_tag]

 [-indent indent_size] [-no_typename] [-debug]

 [-out outfilename] [-gz] filename

where most options customize the look and feel of the XML output, and defaults should

be satisfactory. –max specifies the maximum number of events to dump, –pause causes

evio2xml to pause between events, -skip causes it to skip events before starting to dump

them, -out tells it to send the output to outfilename instead of stdout, and -gz gzips the

output file. –ev can be used multiple times to select event tags of events to be dumped,

and –noev the same but to exclude event tags. Similarly, -frag and –nofrag can be used

to allow or exclude dumping of banks with specific internal (not event) bank tags. By

default the bank tags are printed as numbers. The user can specify ASCII strings to be

used instead in a tag dictionary (via –dict). Contact the DAQ group to get an example

dictionary file.

Section

6

UTILITIES

21

6.2. xml2evio

xml2evio converts an EVIO XML file to a binary EVIO file:

$ xml2evio –h

 xml2evio [-xml xmlfilename] [-max max_event] [-skip nskip]

 [-evio eviofilename] [-dict dictfilename]

 [-m main_tag] [-e event_tag]

where –xml specifies the input file name, –max specifies the maximum number of events

to convert, -skip causes xml2evio to skip events before converting, -evio specifies the

output file name, -dict is as described above for evio2xml, and –m and –e handle custom

XML main and event tags.

6.3. eviocopy

eviocopy copies selected events from a binary EVIO file to another binary EVIO file.

$ eviocopy –h

 eviocopy [-max max_event] [-skip skip_event]

 [-ev evtag] [-noev evtag] [-debug]

 input_filename output_filename

where –max specifies the maximum number of events to copy, -skip cause eviocopy to

skip events, -ev causes eviocopy to only copy events with the specified event tag, and

-noev inhibits copying of events with the specified tag. –ev and –noev can be specified

multiple times on the command line.

C++ TUTORIAL

22

7. C++ Tutorial

Below are examples showing: how to read an event from a file into an evioDOMTree;

how to query the tree to get lists of node pointers that satisfy various criteria and how to

work with the lists; and how to modify the tree. Some advanced topics follow.

7.1. Simple event I/O

Below is a simple example that uses an evioFileChannel object to open and read an EVIO

file, then create an evioDOMTree from the event in the evioFileChannel object, then

dump the event to stdout:

#include <evioUtil.hxx>

using namespace evio;

using namespace std;

int main(int argc, char **argv) {

 try {

 // create evio file channel object for reading, argv[1] is filename

 evioFileChannel chan(argv[1], “r”);

 // open the file

 chan.open();

 // loop over events

 while(chan.read()) {

 // create tree from contents of file channel object

 evioDOMTree tree(chan);

 // print tree

 cout << tree.toString() << endl;

 }

 // eof reached...close file

 chan.close();

 } catch (evioException e) {

Section

7

C++ TUTORIAL

23

 cerr << endl << e.toString() << endl << endl;

 exit(EXIT_FAILURE);

 }

 // done

 exit(EXIT_SUCCESS);

}

The tree can be written to a file via the write() method of the evioChannel class.

7.2. Querying the event tree

There are many ways to query an evioDOMTree to get lists of subsets of nodes in the

tree. To get an STL list of pointers to all nodes in the tree:

evioDOMNodeListP pList = tree.getNodeList();

(Note to experts: evioDOMNodeListP is actually auto_ptr< list<evioDOMNodeP> >,

where evioDOMNodeP is evioDOMNode*)

Here no predicate is given to getNodeList() so all pointers are returned. To get a list of

pointers to just container nodes:

evioDOMNodeListP pContainerList = tree.getNodeList(isContainer());

where isContainer() is a function object provided with the EVIO package (see Appendix

D for a list of all supplied function objects). Similarly, to get a list of just leaf nodes:

evioDOMNodeListP pLeafList = tree.getNodeList(isLeaf());

To get a list of pointers to nodes satisfying arbitrary user criteria:

evioDOMNodeListP pMyList = tree.getNodeList(myChooser);

where myChooser() is a simple C function instead of a function object. An example that

specifies particular tag/num combinations is:

bool myChooser(const evioDOMNodeP node) {

 return(

 ((node->tag==3)&&(node->num==0)) ||

 ((node->tag==2)&&(node->num==1))

);

}

To print all the nodes in the list (there are many ways to do this):

for_each(pList->begin(), pList->end(), toCout());

C++ TUTORIAL

24

for_each() is one of a large number of STL algorithms. It accepts an STL iterator range

(pList->begin(), pList->end()) and applies the function object in its third argument to

each object in the iterator range in turn. Here toCout() is another of the many function

objects supplied by the EVIO package. toCout() invokes the toString() method of the

objects pointed to by the iterator, then streams the result to cout.

To print just leaf nodes, this time using iterators:

evioDOMNodeList::iterator iter;

for(iter=pLeafList->begin(); iter!=pLeafList->end(); iter++) {

 cout << endl << (*iter)->toString() << endl;

}

Note that (*iter) is an evioDOMNodeP, i.e. a pointer to an evioDOMNode object.

To count the number of leaf nodes with tags between 0 and 20 (this is an inefficient

algorithm shown for illustration only):

for(int tag=0; tag<=20; tag++) {

 cout << "There are "

 << count_if(pLeafList->begin(), pLeafList->end(), tagEquals(tag))

 << " leaf nodes with tag " << tag << endl;

}

count_if() is another STL algorithm that counts all objects within the iterator range for

which the predicate in the third argument is true. tagEquals() is another EVIO function

object that returns true if the tag of the object pointed to by the iterator is equal to the

argument given to the tagEquals() constructor, in this case the loop index “tag”.

To search the full list and print the data from all leaf nodes containing floats (i.e.

vector<float>) using the evioDOMNode member function getVector():

evioDOMNodeList::iterator iter;

for(iter=pList->begin(); iter!=pList->end(); iter++) {

vector<float> *v = (*iter)->getVector<float>();

 if(v!=NULL) {

 cout << endl << endl << “Float node data:" << endl;

 for(int i=0; i<v->size(); i++) cout << (*v)[i] << endl;

 }

}

Note that getVector<T>() returns NULL if the node is not a leaf node containing (in this

case) floats. You can tell what type of data is contained in a node via the

getContentType() member function. See Appendix C for a list of legal content types.

To search the full list and access the child lists of container nodes using getChildList():

evioDOMNodeList::iterator iter;

for(iter=pList->begin(); iter!=pList->end(); iter++) {

C++ TUTORIAL

25

 evioDOMNodeList *pChildList = (*iter)->getChildList();

 cout << “Node has “ << pChildList->size() << “ children” << endl;

 if(pChildList->size()>0) {

 evioDOMNodeList::const_iterator cIter;

 for(cIter=pChildList->begin(); cIter!=pChildList->end(); cIter++) {

 cout << "child has tag: " << (*cIter)->tag << endl;

 }

 }

}

7.3. Manipulation of the event tree

To add a new leaf node containing integers to the root node (must be container) of a tree:

unsigned short tag;

unsigned char num;

vector<int> myIntVec(100,1);

tree.addBank(tag=5, num=10, myIntVec);

or:
tree << evioDOMNode::createEvioDOMNode(tag=5, num=10, myIntVec);

or:
tree.root->addNode(evioDOMNode::createEvioDOMNode(tag=5, num=10, myIntVec));

If cn1 is a container node somewhere in the tree hierarchy you can add a new node ln2 to

cn1 (here ln2 is a leaf node containing ints) via:

evioDOMNodeP ln2 = evioDOMNOde::createEvioDOMNode(tag=2, num=8, myIntVec);

cn1->addNode(ln2);

or:
*cn1 << ln2;

To append more data to ln2:

vector<int> myIntVec2(100,2)

ln2->append(myIntVec2);

or:
*ln2 << myIntVec2;

To replace the data in ln2 with new data:

ln2->replace(myIntVec2);

To move ln2 from cn1 to another container node cn3:

ln2->move(cn3);

To cut cn1 out of the tree:

C++ TUTORIAL

26

cn1->cut(); // just cut it out

or:
cn1->cutAndDelete(); // also delete cn1 and all of its contents

7.4. Example programs

A number of annotated example programs exist in the examples directory in the EVIO

distribution. These demonstrate how to read and write files; query and manipulate event

trees; create, manipulate, modify, and delete banks; etc.

7.5. Advanced topics

The following examples cover some more advanced features and topics that can be

ignored by most users:

evioDOMNodeListP is a smart pointer (auto_ptr<>) that is used to ensure the memory

used by the lists returned by getNodeList() is released when the lists go out of scope.

While in most respects smart pointers act like normal pointers, they have some unusual

assignment semantics. If one smart pointer is set equal to another, ownership of the

contents is transferred, and the original loses ownership, e.g:

evioDOMNodeListP p1(...); // p1 points to something

evioDOMNodeLIstP p2(); // p2 empty

p2=p1; // p2 points to something, p1 is now empty!!!

Further, smart pointers must not be stored in STL containers. See the STL

documentation for more information on smart pointers and auto_ptr.

Note that if a standard shared pointer ever appears auto_ptr<> will be replaced. We

decided not to use the Boost shared pointer as Boost is not part of the standard Linux

distribution. We are considering incorporating a third-party shared pointer into the EVIO

library if nothing else appears. Contact EJW for more information.

JEVIO

27

8. Jevio (Java Evio)

The current Java EVIO package, called jevio (actually Java package org.jlab.coda.jevio)

was originally written by Dr. Dave Heddle of CNU and was graciously given to the

JLAB DAQ group for maintenance and continued development. Since it was created

independently of the C++ implementation, it differs in its interface but contains most of

the same functionality.

8.1. Building

The jevio software package uses ant to compile. To get a listing of all the options

available to the ant command, run ant help in the jevio top level directory to get this

output:

help:

 [echo] Usage: ant [ant options] <target1> [target2 | target3 | ...]

 [echo] targets:

 [echo] help - print out usage

 [echo] env - print out build file variables' values

 [echo] compile - compile java files

 [echo] clean - remove class files

 [echo] cleanall - remove all generated files

 [echo] jar - compile and create jar file

 [echo] install - create jar file and install into 'prefix'

 [echo] if given on command line by -Dprefix=dir',

 [echo] else install into INSTALL_DIR or CODA_HOME

 [echo] if defined (in that order)

 [echo] all - clean, compile and create jar file

 [echo] javadoc - create javadoc documentation

 [echo] developdoc - create javadoc documentation for developer

 [echo] prepare - create necessary directories

Although this is fairly self-explanatory, executing ant is the same as ant compile. That

will compile all the java. All compiled code is placed in the generated ./build directory. If

the user wants a jar file, execute ant jar to place the resulting file in the ./build/lib

directory.

8.2. Documentation

In addition to the documentation in this file, there is javadoc which can be generated from

the full source distribution of jevio. While not as detailed in explanation as this chapter, it

will be much more complete with each publicly accessible class and method being listed.

Section

8

JEVIO

28

Javadoc can be generated by going into the top level jevio directory and executing the

command ant javadoc. If more detail is desired, classes and methods which are not public

can be seen by creating the javadoc by executing the command ant developdoc. This is

more suitable for a developer. The resulting javadoc is placed in the ./doc/javadoc

directory. Look in that directory at the file named index.html in a browser.

8.3. Basics

There are some things necessary to know before reading and writing evio format files.

However, this is not intended to be a full evio tutorial. First, let's look at the classes

which form the basis of evio data and do some basic manipulations.

Evio's container structures are banks, segments, and tagsegments. These entities are

implemented with 4 different classes. At the very top level is the EvioEvent which is just

a special case (subclass) of an EvioBank with dictionary and other extra data included.

Banks, of course, have 2 words (8 bytes) of header followed by data. The EvioSegment

and EvioTagSegment classes represent segments and tagsegments respectively, each

have 1 word of header, no num value and differing amounts of tag and type data.

To get information contained in a header, call getHeader() with event, bank, seg, or

tagseg objects. Using the returned BaseStructureHeader object, there are methods

available to get & set values for content type, tag, num, length, and padding.

Events of any complexity (containing container structures) are created using the

EventBuilder class. The writing of events is done through EventWriter objects, and the

reading of events through EvioReader. There is also a graphical viewer of events

available in EventTreeFrame.

In previous versions of jevio, only files could be written and read. Currently, however,

evio data can be handled by buffers and TCP sockets as well.

The next 2 sections have examples which work together. The reading example will read

what the writing example produces.

8.4. Event Creating

There are 2 ways to create an evio event. Start with the simplest first -- use the

EventBuilder class to do it. This takes care of all the little details and requires only the

initial calling of the constructor and subsequent calling of the addChild() method to

create an evio event. The builder will check all arguments, the byte order of added data,

type mismatches between parent & child, and will set all evio header lengths

automatically. The following code uses the EventBuilder to create an event (bank) of

banks with 1 child which is a bank of segments. The bank of segments also has 1 child

which is a segment of shorts.

JEVIO

29

// Use the EventBuilder class to create event of banks, tag=1, num=1

EventBuilder builder = new EventBuilder(1, DataType.BANK, 1);

EvioEvent event = builder.getEvent();

// bank of segments

EvioBank bankSegs = new EvioBank(2, DataType.SEGMENT, 2);

builder.addChild(event, bankSegs);

// segment of 3 shorts

EvioSegment segShorts = new EvioSegment(3, DataType.SHORT16);

short[] sdata = new short[] {1,2,3};

segShorts.setShortData(sdata);

builder.addChild(bankSegs, segShorts);

// To remove a structure

builder.remove(segShorts);

The second means is to call the insert() method of the event or its children. This method

requires the event to call setAllHeaderLengths() at the end to make sure all the evio

headers in the event have the proper lengths set. The following code does exactly what

the previous example does but does not check for the issues mentioned above:

// Use event constructor and insert() calls

EvioEvent event = new EvioEvent(1, DataType.BANK, 1);

// bank of segments

EvioBank bankSegs = new EvioBank(2, DataType.SEGMENT, 2);

event.insert(bankSegs);

// segment of 3 shorts

EvioSegment segShorts = new EvioSegment(3, DataType.SHORT16);

short[] sdata = new short[] {1,2,3};

segShorts.setShortData(sdata);

bankSegs.insert(segShorts);

// To remove a structure

bankSegs.remove(segShorts);

// Make sure all evio headers have correct lengths

event.setAllHeaderLengths();

8.5. Writing

Start writing an evio format file, buffer, or TCP socket with an EventWriter object.

Simply pick among the various constructors for your medium of choice. There are

optional parameters including allowing the user to chose whether to append to or

overwrite any previously existing data. The user can also set the block size and number of

events per block as well as specify a dictionary and data byte order among other things.

Refer to the javadoc for all of the possibilities.

Below is some example code with comments showing how the writing is done. It shows

how to write to both files and buffers as well as how to define a dictionary and how to

create evio data. If the reader is unfamiliar with Java's ByteBuffer class, take some time

to read up on it when using buffers. It will allow you to do many things.

JEVIO

30

// For WRITING a file or buffer

public static void main(String args[]) {

 // Define xml dictionary

 String xmlDictionary =

 "<xmlDict>\n" +

 " <bank name=\"bank of banks\" tag=\"1\" num=\"1\">\n" +

 " <bank name=\"bank of segments\" tag=\"2\" num=\"2\">\n" +

 " <leaf name=\"segment of shorts\" tag=\"3\" />\n" +

 " </bank>\n" +

 " <bank name=\"bank of banks\" tag=\"4\" num=\"4\">\n" +

 " <leaf name=\"bank of chars\" tag=\"5\" num=\"5\"/>\n" +

 " </bank>\n" +

 " </bank>\n" +

 " <dictEntry name=\"last bank\" tag=\"33\" num=\"66\"/>\n" +

 "</xmlDict>";

 // Data to write

 byte[] byteData1 = new byte[] {1,2,3,4,5};

 int[] intData1 = new int[] {4,5,6};

 int[] intData2 = new int[] {7,8,9};

 short[] shortData = new short[] {11,22,33};

 // Do we append or overwrite?

 boolean append = false;

 // Do we write to file or buffer?

 boolean toFile = true;

 ByteBuffer myBuf = null;

 try {

 EventWriter writer;

 if (toFile) {

 // Create an event writer to write out the test events to file

 // along with a dictionary

 String fileName = "./myData";

 File file = new File(fileName);

 writer = new EventWriter(file, xmlDictionary, append);

 }

 else {

 // Or create an event writer to write to buffer

 myBuf = ByteBuffer.allocate(10000);

 myBuf.order(ByteOrder.LITTLE_ENDIAN);

 writer = new EventWriter(myBuf, xmlDictionary, append);

 }

 // event - bank of banks

 EventBuilder builder = new EventBuilder(1, DataType.BANK, 1);

 EvioEvent event = builder.getEvent();

 // bank of segments

 EvioBank bankSegs = new EvioBank(2, DataType.SEGMENT, 2);

 builder.addChild(event, bankSegs);

 // segment of 3 shorts

 EvioSegment segShorts = new EvioSegment(3, DataType.SHORT16);

 segShorts.setShortData(shortData);

 builder.addChild(bankSegs, segShorts);

JEVIO

31

 // another bank of banks

 EvioBank bankBanks = new EvioBank(4, DataType.BANK, 4);

 builder.addChild(event, bankBanks);

 // bank of chars

 EvioBank charBank = new EvioBank(5, DataType.CHAR8, 5);

 charBank.setByteData(byteData1);

 builder.addChild(bankBanks, charBank);

 // Write event to file

 writer.writeEvent(event);

 // How much room do I have left in the buffer now?

 if (!toFile) {

 System.out.println("I have " + myBuf.remaining() + " bytes left");

 }

 // event - bank of ints

 EvioEvent lastEvent = new EvioEvent(33, DataType.INT32, 66);

 // Tell jevio what the data's endianness is.

 // This will not swap anything now but will

 // enable it to be written out properly.

 // NOT necessary to call if data is big endian.

 // Call this BEFORE dealing with data!

 lastEvent.setByteOrder(ByteOrder.LITTLE_ENDIAN);

 // Overwrite all previous data with "setIntData"

 lastEvent.setIntData(intData1);

 // Append data to end with "appendIntData"

 lastEvent.appendIntData(intData2);

 // Write last event to file or buffer

 writer.writeEvent(lastEvent);

 // All done writing

 writer.close();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 catch (EvioException e) {

 e.printStackTrace();

 }

}

8.6. Reading

Start reading an evio format file, buffer, or TCP socket with a EvioReader object. Simply

pick among the various constructors for your medium of choice. There is an optional

parameter allowing the user to make sure the incoming block numbers are sequential.

Find out about block numbers by reading through Appendix A which describes the evio

file format.

Unlike the C interface, jevio automatically allows for a random access approach to

reading files. It maps the file into a buffer which is then scanned to find the positions of

each event. It's easier to give an example of code used to read a file than to explain things

abstractly. Various lines show how to get and use a dictionary, read events with the

JEVIO

32

sequential or random-access methods, get the total number of events, and get & print

data. The code below uses many of the available evio features for reading and will read

the file or buffer created in the previous section.

// For READING a file or buffer

public static void main(String args[]) {

 String fileName = "/home/myAccount/myData";

 File fileIn = new File(fileName);

 ByteBuffer myBuf = null;

 // Do we read from file or buffer?

 boolean useFile = true;

 try {

 EvioReader evioReader;

 if (useFile) {

 evioReader = new EvioReader(fileName);

 }

 else {

 myBuf.flip();

 evioReader = new EvioReader(myBuf);

 }

 // Get any existing dictionary

 String xmlDictString = evioReader.getDictionaryXML();

 EvioXMLDictionary dictionary = null;

 if (xmlDictString == null) {

 System.out.println("Ain't got no dictionary!");

 }

 else {

 // Create dictionary object from xml string

 dictionary = new EvioXMLDictionary(xmlDictString);

 System.out.println("Dictionary:\n" + dictionary.toString());

 }

 // How many events in the file?

 int evCount = evioReader.getEventCount();

 System.out.println("Read file, got " + evCount + " events:\n");

 // Use "random access" capability to look at last event (starts at 1)

 EvioEvent ev = evioReader.parseEvent(evCount);

 System.out.println("Last event = " + ev.toString());

 // Print out any data in the last event.

 //

 // In the writing example, the data for this event was set to

 // be little endian so we need to read it in that way too.

 ev.setByteOrder(ByteOrder.LITTLE_ENDIAN);

 int[] intData = ev.getIntData();

 if (intData != null) {

 for (int i=0; i < intData.length; i++) {

 System.out.println("intData[" + i + "] = " + intData[i]);

 }

 }

 // Use the dictionary

 if (dictionary != null) {

 String eventName = dictionary.getName(ev);

 System.out.println("Name of last event = " + eventName);

 }

JEVIO

33

 // Use sequential access to events

 while ((ev = evioReader.parseNextEvent()) != null) {

 System.out.println("Event = " + ev.toString());

 }

 // Go back to the beginning of file/buffer for sequential methods

 evioReader.rewind();

 }

 catch (EvioException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

}

8.7. Searching

Most users are also interested in searching an event, a bank, a segment, or a tagsegment

for various things. To this end, jevio has a couple of built in searches for ease of use. See

the javadoc for the StructureFinder class for details. Custom searches can be done by

creating filters conforming to the IEvioFilter interface. Simply define an accept() method

to determine which structures to add to a returned list. Following is an example of code

that uses both the built in search for banks with particular tag/num values and also a

simple, user-defined search for finding EvioSegment type structures with odd numbered

tags.

// Take some event (not defined here)

EvioEvent event;

// Search it for banks (not segs, tagsegs) with particular tag & num values

int tag=1, num=1;

List<BaseStructure> list = StructureFinder.getMatchingBanks(

 event, tag, num);

if (list != null) {

 for (BaseStructure bs : list) {

 System.out.println("Evio structure named \"" +

 dictionary.getName(bs) +

 "\" has tag=1 & num=1");

 }

}

// --

// Search for banks/segs/tagsegs with a custom search criteria

// --

// Define a filter to select Segment structures with odd numbered tags.

class myEvioFilter implements IEvioFilter {

 public boolean accept(StructureType type, IEvioStructure struct){

 return (type == StructureType.SEGMENT &&

 (struct.getHeader().getTag() % 2 == 1));

 }

};

// Create the defined filter

myEvioFilter filter = new myEvioFilter();

JEVIO

34

// Use the filter to search "event"

list = StructureFinder.getMatchingStructures(event, filter);

if (list != null) {

 for (BaseStructure bs : list) {

 System.out.println("Evio structure named " +

 dictionary.getName(bs) + " is Segment with odd tag");

 }

}

Note that any bank, segment, or tagsegment structure can call getMatchingStructures()

directly instead of through the StructureFinder class.

8.8. Parsing

Users have some options while parsing events. Listeners and filters may be added to an

EvioReader to be used while events are being parsed. The previous section has a good

example of how to create a filter. One such filter can be set for a reader object allowing

the user to weed out events of no interest.

Jevio also has an IEvioListener interface that can be used to define multiple listeners that

operate during parsing in a SAX-like manner. For each listener, simply define 3 methods

to be run -- before an event is parsed, just after a structure in the event (bank, segment, or

tagsegment) has been parsed, and after the entire event has been parsed. Following is an

example of code that uses both a listener and a filter.

// Read some evio format file

EvioReader evioReader = new EvioReader(fileName);

// Get the parser which is contained in the reader

EventParser parser = evioReader.getParser();

// Define a listener to be used with an event parser

IEvioListener listener = new IEvioListener() {

 // Run this method after each bank/seg/tagseg has been parsed

 public void gotStructure(BaseStructure topStructure,

 IEvioStructure structure) {

 System.out.println("Parsed structure of type " +

 structure.getStructureType());

 }

 // Run this method before the event is parsed

 public void startEventParse(BaseStructure structure) {

 System.out.println("Starting event parse");

 }

 // Run this method after the event has been parsed

 public void endEventParse(BaseStructure structure) {

 System.out.println("Ended event parse");

 }

};

// Add the listener to the parser

parser.addEvioListener(listener);

JEVIO

35

// Define a filter to select everything (not much of a filter!)

class myEvioFilter implements IEvioFilter {

 public boolean accept(StructureType type, IEvioStructure struct){

 return true;

 }

};

// Create the above-defined filter

myEvioFilter filter = new myEvioFilter();

// Add the filter to the parser

parser.setEvioFilter(filter);

// Now parse some event

EvioEvent ev = evioReader.parseEvent(1);

8.9. Transforming

Occasionally there can arise problems with the "num" parameter defined by a EvioBank

header but not the header of the EvioSegment or EvioTagsegment. The

StructureTransformer class can be used to transform objects between these 3 classes

while taking care of the troublesome num. For example:

// Take an existing EvioSegment

EvioSegment seg;

int num = 10;

// Turn that segment into a bank

EvioBank bank = StructureTransformer.transform(seg, num);

8.10. Dictionaries

This section describes how dictionaries can be used (refer to Appendix C for the format).

In general it is easiest to have one global dictionary defined when manipulating evio data.

For jevio this can be set in the singleton NameProvider class/object. To set this global

dictionary simply do something like:

// Define xml dictionary String

String xmlDictString =

 "<xmlDict>\n" +

 " <dictEntry name=\"first bank\" tag=\"1\" num=\"1\"/>\n" +

 " <dictEntry name=\"second bank\" tag=\"2\" num=\"2\"/>\n" +

 "</xmlDict>";

// Create a dictionary object from xml String

EvioXmlDictionary dict = new EvioXmlDictionary(xmlDictString);

// Make it the global dictionary

NameProvider.setProvider(dict);

Once the global dictionary is set, the question is, "how is it used"? The section in this

chapter for "Searching" uses the StructureFinder class and that is the case here as well.

This class uses the global dictionary if defined, but another dictionary may be specified

JEVIO

36

as an argument to its methods. There three methods in this class that use the dictionary as

seen below:

// Take some event (not defined here)

EvioEvent event;

// Names to look for

String name = "dictionaryEntry";

String childName = "childEntry";

String parentName = "parentEntry";

// Search for structures (banks, segs, tagsegs) with a particular name

List<BaseStructure> list1 = StructureFinder.getMatchingStructures(

 event, name, dict);

// Search for structures whose parent has a particular name

List<BaseStructure> list2 = StructureFinder.getMatchingParent(

 event, parentName, dict);

// Search for structures who have a child with a particular name

List<BaseStructure> list3 = StructureFinder.getMatchingChild(

 event, childName, dict);

// Print out the list of structures

if (list2 != null) {

 for (BaseStructure bs : list2) {

 System.out.println("Structure named \"" + dictionary.getName(bs) +

 "\" has a parent named " + parentName);

 }

}

 In order to implement other types of searches, it would be relatively simple to copy the

code for any of the three methods and modify it to suit.

When a file or buffer is read, it may have a dictionary in xml format associated with it.

That dictionary is accessible through the EvioReader.getDictionaryXML() method. For

convenience, the EvioEvent class has a place to store and retrieve an xml dictionary

string by using its setDictionaryXML(), getDictionaryXML(), and hasDictionaryXML()

methods.

The dictionary can also be used directly as an object of the EvioXmlDictionary class.

Once an xml string is parsed into such an object (by means if its constructor), there are

methods to retrieve the parsed information. These methods can obtain tag/num pairs

associated with a name a vice versa. They can also obtain data types, data formats, and

descriptive comments associated with either a name or tag/num pair.

// Define xml dictionary String

String xmlDictString =

 "<xmlDict>\n" +

 " <dictEntry name=\"me\" tag=\"10\" num=\"0\" type=\"composite\" />\n" +

 " <description format=\"2iN(FD)\" >\n" +

 " Any comments can go right here!" +

 " </description>\n" +

 " </dictEntry>\n" +

 "</xmlDict>";

// Create a dictionary object from xml String

EvioXmlDictionary dict = new EvioXmlDictionary(xmlDictString);

JEVIO

37

// Retrieve & print info from dictionary

System.out.println("Getting stuff for name = \"me\":");

System.out.println(" tag = " + dict.getTag("me"));

System.out.println(" num = " + dict.getNum("me"));

System.out.println(" type = " + dict.getType("me"));

System.out.println(" format = " + dict.getFormat("me"));

System.out.println(" description = " + dict.getDescription("me"));

System.out.println("Getting stuff for tag = 10, num = 0:");

System.out.println(" type = " + dict.getType(10,0));

System.out.println(" name = " + dict.getName(10,0));

System.out.println(" format = " + dict.getFormat(10,0));

System.out.println(" description = " + dict.getDescription(10,0));

EVIO FILE FORMAT

38

A. Evio File Format

There has been a change in the format used to store evio data in files (and in this version,

buffers and over TCP sockets as well). Following are descriptions of both the old format

and the new.

 A.1 Old Format, Evio Versions 1-3

Each file is divided into equal size blocks with each block having a header of 8, 32-bit

integers or words. The fixed sized block was used as a means to recover data in case of

tape storage problems. Following is a diagram of the header:

OLD BLOCK HEADER

MSB(31) LSB(0)

<--------------- 32 bits ------------->

Block Length

Block Number

Header Length

Start

End

Version

Reserved 1

Magic Number

 The block length is number of 32 bit words in the block (including itself).

Although it is adjustable, this was generally fixed for versions 1-3 at 8192 (32768

bytes).

 The block number is an id # used by the event writer.

 The header length is the number of 32 bit words in this header. In theory this too

is adjustable but in practice was always 8.

 The start is the offset in words to the first event header in block relative to the

start of the block.

Appendix

A

EVIO FILE FORMAT

39

 The end is the number of valid words (header + data) in the block. This is equal to

the block size unless it is the last block in which case it may be less.

 The version is the current evio format version number (1,2, or 3).

 The reserved 1 is unused.

 Finally, the magic number is the value 0xc0da0100 and is used to check

endianness.

Following the header is the data. Often events ended up being split across one or more

blocks. The start header word was used to find the beginning of the next event's header

inside the block.

 A.2 New Format, Evio Version 4

Each file is still divided into blocks with each block having a header. In the new format,

to simplify things, each block contains an integral number of events which in turn means

that the size of each block is not fixed. Following is a diagram of the new header:

NEW BLOCK HEADER

MSB(31) LSB(0)

<--------------- 32 bits ------------->

Block Length

Block Number

Header Length

Event Count

Reserved 1

 Bit info | Version

Reserved 2

Magic Number

 The block length is number of 32 bit words in the block (including itself). In

general, this will vary from block to block.

 The block number is an id # used by the event writer.

 The header length is the number of 32 bit words in this header - set to 8 by

default. This can be made larger but not smaller. Even though, theoretically, it can

be changed, there are no means to do this or take advantage of the extra memory

through the C, C++ or Java evio libraries.

 The event count is the number of events in this block - always integral. Note that:

this value should not be used to parse the following events since the very first

block may have a dictionary whose presence is not included in this count.

 The Reserved 1 & 2 are unused.

EVIO FILE FORMAT

40

 And the magic number is the value 0xc0da0100 and is used to check endianness.

 That leaves only the bit info and version word for discussion. The version is the

current evio format version number (4) and takes up the lowest 8 bits. The other

bits are used to store the various useful data listed below:

BIT INFO WORD

Bit # (0 = LSB) Function

0-7 Version # = 4

8 = 1 if dictionary is included

(first block only)

9 = 1 if this block is the last

block in file, buffer, or

network transmission

13-10 type of events in block:

ROC Raw = 0

Physics = 1

Partial Physics = 2,

Disentangled Physics = 3,

User = 4,

Control = 5,

Prestart = 6,

 Go = 7,

Pause = 8,

End = 9

Other = 15

31-14 unused

What isn't so clear yet is how events are divided into blocks. In java, some of the

constructors for the EventWriter class have arguments specifying

EVIO DATA FORMAT

41

B. EVIO Data Format

B.1 Bank Structures & Content

EVIO data is composed of a hierarchy of banks of different types. Container banks

contain other banks, and leaf banks contain an array of a single primitive data type.

Three types of banks exist: BANK, SEGMENT, and TAGSEGMENT. BANK has a

two-word header, the latter two have a one-word header. All banks contain a length, tag

and type. BANK additionally has a num field. SEGMENT and TAGSEGMENT differ

on the number of bits allocated to the tag and type. Tag and num are user-defined while

type denotes the bank contents and the codes listed in the table below MUST be used or

endian swapping will fail. Length is always the number of 32-bit longwords to follow

(i.e. bank length minus one). New to this version of EVIO is the pad for both BANK and

SEGMENT banks which indicates the number of bytes used for padding when type

indicates 8 or 16 bit integers.

BANK HEADER

SEGMENT HEADER

TAGSEGMENT HEADER

Appendix

B

length

 tag | pad | type | num

 tag | pad | type | length

 tag | type | length

MSB 32 bits LSB

Bits: 8 2 6 16

Bits: 16 2 6 8

Bits: 12 4 16

EVIO DATA FORMAT

42

CONTENT TYPES

contentType Primitive Data Type

0x0 32-bit unknown (not swapped)

0x1 32 bit unsigned int

0x2 32-bit float

0x3 8-bit char*

0x4 16-bit signed short

0x5 16-bit unsigned short

0x6 8-bit signed char

0x7 8-bit unsigned char

0x8 64-bit double

0x9 64-bit signed int

0xa 64-bit unsigned int

0xb 32-bit signed long

0xc TAGSEGMENT

0xd SEGMENT

0xe BANK

0xf COMPOSITE

0x10 BANK

0x20 SEGMENT

0x21 Hollerit

There are a few more things that the user must keep in mind:

 bank contents immediately follow the bank header

 the first bank in a buffer or event must be a BANK

 the CODA DAQ system defines specific conventions for tag and num values.

B.2 Changes From Previous Versions

There are a few changes from previous EVIO versions to take note of. A backwards-

compatible change has been made for strings (type 0x3). Previously, a single ASCII, null-

terminated string with undefined padding was contained in this type. Starting with

version 4, an array of strings may be contained. Each string is separated by a null-

termination (value of 0). A final termination of at least one 4 (ASCII char of value 4) is

required in order to differentiate it from the earlier versions and to signify an end to the

array. It is a self-padded type meaning it always ends on the 32 bit boundary.

EVIO DATA FORMAT

43

Another change is that the type of 0x40, which was redundantly defined to be a

TAGSEGMENT, has been removed since its value uses bits necessary to store the

padding. This is unlikely to cause any problems since it was never used.

The pad in the BANK and SEGMENT types indicates the number of bytes used for

padding to 32 bit boundaries when type indicates 8 or 16 bit integers (type = 0x4, 0x5,

0x6, or 0x7). For 16 bit types pad will be 0 or 2 while for the 8 bit types it will be 0-3.

Unlike previous versions, this allows EVIO to contain odd numbers of these types with

no ambiguity. For example, since a bank of 3 shorts is the same length as a bank of 4

shorts (banks must end on a 32 bit boundary) previously there was no way to tell if the

last short was valid data or not. Now there is. Note, however, this is not the case with the

TAGSEGMENT bank and so it is not recommended for storing these types.

B.3 Composite Data Type

A new type - COMPOSITE - has been added which originated with Hall B but also

allows for future expansion if there is a need. Basically the user specifies a custom format

by means of a string. Although in practice it acts like a primitive type in that you can

have a bank containing an array of them, a single COMPOSITE type looks more like 2

banks glued together. The first word comprises a TAGSEGMENT header which is

followed by a string describing the data to come. After this TAGSEGMENT containing

the data format string, is a BANK containing the actual data.

COMPOSITE TYPE

 tag | type | length

data format string ...

length

 tag | pad | type | num

actual data ...

The routine to swap this data must be provided by the definer of the composite type - in

this case Hall B. This swapping function is plugged into the EVIO library's swapping

routine. Currently its types, tags, pad, and num values are not used. Only the lengths are

significant.

There is actually another new type defined - the Hollerit type, but that is only used inside

of the COMPOSITE type and refers to characters in an integer form. Following is a table

of characters allowed in the data format string.

EVIO DATA FORMAT

44

DATA FORMAT CHARACTERS

Data format

char

Meaning

((

))

i 32-bit unsigned int

F 32-bit floating point

a 8-bit ASCII char

S 16-bit short

s 16-bit unsigned short

C 8-bit char

c 8-bit unsigned char

D 64-bit double

L 64-bit int

l 64-bit unsigned int

I 32-bit int

A Hollerit

N Multiplier in 32-bit int

In the format string, each of the allowed characters (except ")" or "N") may be preceded

by an integer which is a multiplier. Instead of trying to explain the format abstractly, let's

look at the following example:

 iL2(s2DNF)

This format translates into the data being read and processed in the following order: a

single 32-bit unsigned int, a single 64-bit int, an unsigned short, 2 doubles, a multiplier

(32 bit int), multiplier number of 32-bit floats, an unsigned short, 2 doubles, a multiplier

(32 bit int), multiplier number of 32-bit floats. The data is read in according to this recipe.

There are a couple of data processing rules that are very important:

1) If the format ends but the end of the data is not reached, the format in the last

parenthesis will be repeated until all data is processed. If there are no parentheses

in the format, data processing will start again from the beginning of the format

until all data is processed.

2) The explicitly given multiplier must be a number between 2 and 15 - inclusive. If

the number of repeats is the symbol 'N' instead of a number, that multiplier will be

read from data assuming 'I' format and may be any positive integer.

The COMPOSITE data type allows compact storage of different primitive data types and

eliminates the need for extra banks and their accompanying headers. It does, however,

EVIO DATA FORMAT

45

pay a penalty in the amount of computing power needed to read, write, and swap it. For

example, each time a COMPOSITE bank needs to be swapped, EVIO must read the

format string, process it, and convert it into an array of ints. Then, with the converted

format as a guide, EVIO must read through the data item-by-item, swapping each one. It

is quite compute intensive.

EVIO DICTIONARY FORMAT

46

C. EVIO Dictionary Format

Since names are easier for humans to deal with than pairs of numbers, the basic idea

behind the dictionary is to associate a single string, a name, with 2 integers, an evio tag

and an evio num. The xml protocol was used to accomplish this. The following gives the

different xml formats used by the different versions of evio.

C.1 Evio versions 2 & 3

The xml format has been evolving. Originally, because EVIO data is stored in a

hierarchical manner with banks containing banks containing data, the dictionary format

was also hierarchical. In other words, a string was associated with not only the 2 numbers

but a place in the hierarchy as well. The idea was that a given pair of tag/num values

could occur in more than one location in the hierarchy and must be distinguishable from

each other. Following is an example of the first format used:

<xmlDict>

 <xmldumpDictEntry name="event_1" tag="1" num="1"/>

 <!-- DC -->

 <xmldumpDictEntry name="DC" tag="500" num="0"/>

 <xmldumpDictEntry name="DC_id" tag="500.1" num="0.0"/>

 <xmldumpDictEntry name="DC_output" tag="500.2" num="0.100"/>

 <xmldumpDictEntry name="sector5" tag="500.2.5" num="0.100.23"/>

</xmlDict>

There is only one possible element - xmldumpDictEntry. Notice the dotted notation of

the tag & num attributes. This notation, for example the tag 500.2.5, simply means that

this dictionary entry has a tag value of 5, its parent has a tag value of 2, and its

grandparent has a tag value of 500. Basically it is a way of specifying a place in the evio

tree or hierarchy.

Appendix

C

EVIO DICTIONARY FORMAT

47

 C.1.1 Jevio problems

The jevio-1.0 software package did not allow dotted notation for the tag, but did allow it

for the num. The rules that jevio uses to determine whether a bank, event, segment, or

tagsegment object matches a particular dictionary entry is:

1) if it is an EvioSegment or EvioTagSegment object, the first entry that matches its

tag value is returned

2) if it is an EvioEvent object, the first entry that matches its tag value and the first

level num value is returned

3) if it is an EvioBank object, the first entry that matches its tag value and the

complete hierarchy of num values is returned

Although this works after a fashion, it unfortunately does not match tag values in a

hierarchical manner.

 C.1.2 C++ Evio problems

The C++ library's handling of the dictionary's tags & nums is not perfect either. The

difficulty arises from the fact that when creating an evio tree of banks, segments, and

tagsegments, C++ evio does not distinguish between them. Each container is simply a

node that may be added, removed, cut, and pasted anywhere in the tree. Only upon

serializing the tree to a file does the fact that a node is one of the 3 types come into play.

In order for this model to function, all segments and tagsegments are essentially treated

as banks with num = 0. Thus a dictionary entry with tag = 1 & num = 0 will match both a

bank with those parameters and a segment with tag = 1 but no num. Worse yet, a node

can set num = 1, be written out as a segment, and then be read back in with num = 0. This

limitation must be taken into consideration when creating dictionaries & evio trees.

C.2 Evio version 4

A number changes to the previous evio dictionary format have been made. Let's start with

what has been eliminated. Previously the num and tag values could be hierarchical with

each level separated by a period such as:

tag = '1.2.3' num = '2.5'

These types of values for tag and num were stored in the dictionary making the matching

of a bank to a dictionary entry tricky since now the parents and children of the bank

became involved. Not only was the matching complicated but a dictionary entry would

have to change depending on where a particular bank was moved to in an evio event tree

- very inconvenient and prone to error.

The first change eliminates these hierarchical tags & nums. Each dictionary entry is a

single name associated with a single tag value and a single num value (with segments and

tagsegments given a num value of 0). It becomes a simple matter to build hierarchies into

the name as will be demonstrated below.

EVIO DICTIONARY FORMAT

48

The C/C++ dictionary and the Java dictionary now have identical formats. In the old xml

format, there was only one entry type namely, the xml element of xmldumpDictEntry.

There are now 3 types of XML dictionary elements: dictEntry (replaces

xmldumpDictEntry which is too long), bank and leaf.

For each of these elements, the only attributes a dictionary parser will look at are name,

tag, num, and the newly added type (of contained data). All other elements and attributes

are ignored, so the XML can be used to define whatever else is desired. Note that only

the following case-independent values are valid for type with all other values being

ignored:

int32, unint32, long64, ulong64, short16, ushort16, char8, uchar8,

charstar8, float32, double64, bank, segment, tagsegment, composite,

unknown32

The simplest xml element is dictEntry, it just makes an entry into the map of names vs

tag/num pairs:

<dictEntry name="fred" tag="1" num="1" />

Here the name "fred" is a synonym for the tag/num pair (1,1).

The elements "bank" and "leaf" are used for describing hierarchical bank structures. Take

a look at the following:

<bank name="CLAS12" tag="1" num="0">

 <bank name="DC" tag="20" num="0">

 <leaf name="xpos" tag="20" num="1"/>

 <leaf name="ypos" tag="20" num="2"/>

 <leaf name="zpos" tag="20" num="3"/>

 </bank>

 <bank name="SC" tag="30" num="0">

 <leaf name="xpos" tag="30" num="1"/>

 <leaf name="ypos" tag="30" num="2"/>

 <leaf name="zpos" tag="30" num="3"/>

 </bank>

</bank>

where "bank" means an evio container (bank, segment, or tagsegment), and "leaf" means

an evio container with no children. The parser will generate map entries equivalent to the

following:

<dictEntry name="CLAS12" tag="1" num="0"/>

<dictEntry name="CLAS12.DC" tag="20" num="0"/>

<dictEntry name="CLAS12.DC.xpos" tag="20" num="1"/>

<dictEntry name="CLAS12.DC.ypos" tag="20" num="2"/>

<dictEntry name="CLAS12.DC.zpos" tag="20" num="3"/>

<dictEntry name="CLAS12.SC" tag="30" num="0"/>

<dictEntry name="CLAS12.SC.xpos" tag="30" num="1"/>

<dictEntry name="CLAS12.SC.ypos" tag="30" num="2"/>

<dictEntry name="CLAS12.SC.zpos" tag="30" num="3"/>

EVIO DICTIONARY FORMAT

49

This scheme works well if all tag/num pairs are unique. That way there is a unique string

associated with each tag/num pair. If multiple names are linked with the same pair, then

searching for a particular name may not return the appropriate values. Likewise,

searching for a tag/num pair may not return the appropriate name. On the other hand, if a

single name is linked with multiple pairs, the same confusion can result. In order to avoid

these problems, both the C++ and Java implementations of the dictionary only allow

unique mappings.

In addition to the tag, num, and name attributes, the dictionary can also hold the type

information about the contents of an evio container (unknown types are ignored). For

example the following associates "fred" with 32 bit signed integers:

<dictEntry name="fred" tag="1" num="1" type="int32" />

The new composite type of data requires even more information about the format of the

data inside. To accommodate this, all dictionary entries may now have a description xml

subelement defined. These descriptions may have the format attribute defined as well:

<xmlDict>

 <dictEntry name='myName' tag='123' num ='456' type='composite' >

 <description format='FDNi' >

 F TDC

 D ADC min=5.0 max=10.0

 N multiplier

 i scaler bits0-15=counter1 bits15-32=counter2

 </description>

 </dictEntry>

</xmlDict>

The description and format can be anything meaningful to the user. Hall D will use a set

format for both entries when using composite type data so they can be parsed and

additional information extracted from it. This is done to allow flexibility to the user but

not in a way that would be a constantly changing specification for evio.

 C.2.1 Behaviors

There are a few other issues that need to be addressed. The use of the "leaf" element is

optional and may be replaced by "bank". However, if "leaf" is used, it may not have any

children. Even though XML is case-sensitive, in the parsing of the dictionary, all the

accepted elements' and attributes' cases are ignored.

The rules that jevio now uses to determine whether a bank, event, segment, or tagsegment

object matches a particular dictionary entry is:

1) if it is an EvioEvent, EvioBank, EvioSegment or EvioTagSegment (any kind of

container) object, the first and only entry that matches its "tag" value and its

"num" value is returned

2) if it is an EvioSegment or EvioTagSegment object, its num value is assumed to be

0 (zero) for purposes of matching

The xml representation of a dictionary can be embedded in a larger xml document.

Giving this larger document as the dictionary to be parsed is perfectly acceptable and the

EVIO DICTIONARY FORMAT

50

code will pick out the dictionary portion. If multiple dictionaries are included, only the

first is used and the rest are ignored.

Furthermore, irrelevant xml elements and attributes may be present and are simply

ignored. When the jevio toXml() method of a dictionary is called, only the dictionary

portion of the original, full xml document is returned as a String.

 C.2.2 Differences between C++ and Java

There still are a couple differences between Java and C++. The first is if a "leaf" entry

has any children, jevio will print a warning and ignore any such children while evio will

throw an exception. Similarly, if there are duplicate entries - either names or tag/num

pairs - an exception is thrown in C++ but in Java they are ignored (including any of their

children) and a warning is printed. These differences are allowed for backwards

compatibility purposes in jevio. Be aware that in jevio all the dictEntry elements are

processed before the bank and node elements. So if there are duplicate entries, any

dictEntry elements are given preference over the bank or leaf.

EVIO FUNCTION OBJECTS

51

D. EVIO Function Objects

A number of useful adaptable function objects for applying STL algorithms to the lists

returned by getNodeList() are provided. Adaptable means they can be used with STL

function object adaptors (see the STL documentation). Their constructors are:

operator() returns bool:

 typeIs<T>(void)

 typeEquals(int aType)

 tagEquals(unsigned short aTag)

 numEquals(unsigned char aNum)

 tagNumEquals(unsigned short aTag, unsigned char aNum)

 parentTypeEquals(int aType)

 parentTagEquals(unsigned short aTag)

 parentNumEquals(unsigned char aNum)

 parentTagNumEquals(unsigned short aTag, unsigned char aNum)

 isContainer(void)

 isLeaf(void)

operator() returns void:

 toCout(void)

Appendix

D

REVISION HISTORY

52

E. Revision History

Version Date Comment

1.0 Early 1990’s Original C version

2.0pre-beta Mid-2002 XML utilities, bug fixes, I/O enhancements, etc.

2.0beta Oct 2005 C++ API, stream and DOM parsing and trees, etc.

2.0 Jan 2007 Full tree manipulation API implemented

4.0 Aug 2012 Random access, append mode, new file format

Appendix

E

