

EMU 3.3 User’s Guide

16-Jun-2021

Carl Timmer

© Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave

Newport News, VA 23606
Phone 757.269.7100

Table of Contents

1 Introduction .. 4

1.1. Input / Output ... 5

1.2. Modules .. 5

1.3. Configuring .. 6

1.4. Monitoring, and Controlling.. 6

2 Getting, Building, and Installing the EMU .. 7

2.1. Getting the EMU .. 7

2.2. Compiling Java .. 7

2.3. Building Documentation .. 9

3 Data Input and Output .. 10

3.1. Transports .. 10
3.1.1. FIFOs .. 10
3.1.2. Files .. 11
3.1.3. cMsg messages in cMsg domain .. 11
3.1.4. Sockets in cMsg emu domain... 11
3.1.5. ET ... 12

3.2. Channels .. 14
3.2.1. FIFOs .. 14
3.2.2. Files .. 15
3.2.3. cMsg – cMsg domain ... 17
3.2.4. cMsg – emu domain ... 18
3.2.5. ET ... 20
3.2.6. Event Recorder – special rules ... 22

4 Modules ... 23

4.1. Config File ... 23

4.2. Fast Event Builder ... 24

4.3. Event Recording ... 26

4.4. ROC Simulation ... 26

4.5. Trigger Supervisor Simulation... 27

4.6. Farm Controller ... 28

5 Running an EMU with Run Control .. 29

5.1. Config File Final Form.. 29

5.2. Creating EMUs .. 30

5.3. Platform connection ... 31

5.4. Running a single EMU ... 31

5.5. Running Multiple EMUs .. 31

6 Running an EMU with the Debug GUI .. 32

7 Developer's Details ... 35

7.1. cMsg Run Control Connection .. 35

7.2. Data Flow .. 36

7.3. ET Channels ... 36
7.3.1. Output ... 36
7.3.2. Input ... 37

7.4. cMsg Channels, cMsg domain ... 38
7.4.1. Output ... 38
7.4.2. Input ... 38

7.5. cMsg Channels, emu domain ... 38
7.5.1. Output ... 39
7.5.2. Input ... 39

7.6. Simulated ROCs and TS ... 39
7.6.1. Trigger Supervisor.. 40
7.6.2. ROCs .. 40

7.7. Simulated Fixed-Rate ROCs and TS .. 41

7.8. Evio Events Per ET Buffer ... 42

8 Fast Ring Buffers .. 44

8.1. Locks are Bad .. 44

8.2. Cache Lines.. 45

8.3. The Trouble with Queues ... 45

8.4. Disruptor Design ... 46

8.5. Disruptor Use in a Previous EB .. 46

8.6. Disruptor Use in the Byte Buffer Supply ... 48

8.7. General Disruptor Use in the Emu .. 49

8.8. Ring Buffer Example Code .. 50

A. CODA Types... 52

Chapter 1

1 Introduction

Prior to CODA (CEBAF online data acquisition) version 3, CODA's data-handling

software components were self-contained, independent software entities. These

components included the Readout Controller (ROC) which ran on embedded computers

using the realtime operating system vxWorks. Its task was to read the data-producing

hardware modules, package the data and send it to the next component. Next in line was

the Event Builder (EB) which took the data from all of the ROCs and made one EVIO

event out of it. Finally, there was the Event Recorder (ER) which took the nicely

packaged data and wrote it to a file.

Each component's communications had to be carefully coordinated with the other

components and each was also individually responsible to communicate with run control

and respond to its commands. As you can imagine, much of the code was redundant

between the ROC, EB, and ER.

With the development of the ET system, which was used in CODA version 2 to transport

data from the EB to users and to the ER, it was a small jump to use it between the ROC

and the EB as well. The additional availability of the cMsg message-passing software

package made it another tiny hop to replace all run control communication code with

calls to cMsg. Between these 2 pieces of software, all the interprocess communication

needs were met and all the data transfer software was abstracted out of the CODA

components.

While CODA version 3 is built on its ability to use ET and cMsg to do all the "talking",

another area of abstracting functionality involves the EB and ER. Both are very similar in

functionality in that they both read data, do something to the data, write the data, and

respond to run control commands. Right away it's obvious that the reading in, writing out,

and run control parts can be identical between the EB and ER. It's also a fairly simple

matter to take the middle part (doing something with the data) and make that a plug-in.

This is the fundamental structure of the EMU. It's a framework to ease development by

taking out all the identical CODA component pieces and programming them once for all.

It allows selection of standard inputs and outputs and it accepts run control commands.

All the user must do is write the plug-in to handle the data and respond to the incoming

commands.

1.1. Input / Output

The EMU is designed to read and write evio format data. It may accept such data by 4

different means or transports:

• through the ET system

• in cMsg messages using the cMsg domain pub/sub server

• in cMsg messages using the cMsg emu domain TCP sockets, and

• from files.

A single, different transport deals with each of these four types of data transfer. Multiple

transports can be used in a single EMU. Each of these transports can have multiple

channels in a single EMU as well. Each channel is a single connection to an ET system

or cMsg server, or opening of a file.

The transport handling code is abstracted from the rest of the EMU in such a way as to be

able to add other means of I/O. To document the complete interface to accomplish this is

too much work for a task best left to the DAQ group itself. Thus, if a user needs to

interface with another type of I/O, contact the DAQ group to make arrangements for

adding the necessary code.

The EMU expects ET events or buffers to contain evio data - simple enough. In cMsg, it

expects the byte array to contain the evio data (in Java, msg.getByteArray()) - equally

simple. Files are self-explanatory.

1.2. Modules

Between the input and output channels are modules. These are Java classes that take evio

events from an input channel and place evio events on an output channel. There can be

more than one module to a single EMU. The modules are ordered sequentially so that the

data flows in one path through the EMU. Fifos are I/O channels used between modules.

The data flow looks like Figure 1 below. An input channel receives data through an ET

event, cMsg message or file. It parses the incoming data into evio events. Each evio event

received is placed into its queue. That queue along with all the other input channel queues

are inputs to the first module. That module takes each evio event, processes it, and then

places it in an output channel or fifo. At this point either the next module gets, processes,

and passes it on, or it goes to a queue of one of the output channels. The channel then

gets, processes, and sends it somewhere else.

Figure 1.1 EMU Data Flow

1.3. Configuring

Each EMU can be configured through an XML configuration file with specific elements

and attributes (details are contained in later chapters). They can be complicated to

configure since there are such a large number of parameters one can tweak. A large part

of the complication is due to interprocess communication.

1.4. Monitoring, and Controlling

The EMU can be visually monitored and controlled by means of a built-in debugging

GUI. This GUI is useful when, for example, the user is testing a module and no run

control platform is operating, since it can send the run control commands to the EMU.

Chapter 2

2 Getting, Building, and Installing the EMU

You must install Java version 8 or higher since all pre-built CODA jar files are compiled

with it.

2.1. Getting the EMU

The EMU package documentation can be found on the JLab Data Acquisition Group

CODA wiki at http://coda.jlab.org. However, all this site does is direct one to the github

repository in which the package is stored. For Java users, a pre-built jar file is already

available on the CODA site and is also contained in the code downloaded from github

and usually is all that is needed.

To install all of the EMU do:

git clone –b emu-3.3 https://github.com/JeffersonLab/emu.git

This will give you a full EMU distribution with the top-level directory being emu. It will

be on the emu-3.3 branch which, strangely enough, corresponds to EMU version 3.3. The

documentation is available on the above-mentioned web site but also exists in the doc

subdirectory of the full distribution.

2.2. Compiling Java

One can find the pre-built emu-3.3.jar file in the repository in the java/jars/java8

directory built with Java 8, or one can also find that jar in the java/jars/java15 directory

built with Java 15, or it can be generated. In either case, put the jar file into your

classpath and run your java application.

When generating the jar file, it’s advisable to use java version 8 or higher since all other

pre-built CODA jar files have been compiled with java 8. Ant must be installed on your

system (http://ant.apache.org). Simply execute:

http://coda.jlab.org/
https://github.com/JeffersonLab/emu.git
http://ant.apache.org)/

ant jar

in the top-level directory. To get a list of options with ant, type:

ant help

Following is a table of the available options:

ant command action

ant, ant compile compile all java source code

ant help print out usage

ant env print out value of build file variables

ant clean remove all class files

ant cleanall remove all generated files - not including documentation

ant jar compile and create emu jar file

ant install create cmsg jar file and install all jars into 'prefix' if given

on command line by -Dprefix=dir', else install into CODA if

defined (ET jar file is not installed)

ant uninstall remove all jar files previously installed into 'prefix' if given

on command line by -Dprefix=dir', else installed into

CODA if defined (ET jar file is not removed)

ant all do clean, compile, then create emu jar file

ant javadoc create javadoc documentation for user

ant developdoc create javadoc documentation for user & developer

ant undoc remove all javadoc documentation

ant prepare create necessary directories

The generated jar file is placed in build/lib. Included in the java/jars subdirectory are all

auxiliary jar files used by the emu. When installing the emu jar, the disruptor and swing-

layout jars are also installed. The emu also needs the cMsg, et, and evio jars as well, but

those will not be installed from this repository. Check those individual package web sites

for more information.

2.3. Building Documentation

All documentation is available from http://coda.jlab.org. However, if using the

downloaded distribution from github, some of the documentation needs to be generated

and some already exists. For existing docs look in doc/users_guide for pdf and Word

format documents.

Some of the documentation is in the source code itself and must be generated and placed

into its own directory. The java code is documented with javadoc comments. The

generated javadoc from that is placed in the doc/javadoc directory. To view the html

documentation, just point your browser to the index.html file in that directory. This

documentation can be generated by typing:

ant javadoc

for user-level documentation, or

ant developdoc

for developer-level documentation. To remove it:

ant undoc

http://coda.jlab.org/

Chapter 3

3 Data Input and Output

EMU's can be complicated to configure since there are such a large number of parameters

one can set. Most of the complication is due to interprocess communication. To review,

EMUs may use 4 different means of communication to the outside world: ET systems,

cMsg messages in cMsg domain, TCP sockets in cMsg emu domain, and files. The data

being sent to, through, and out of the EMU is in EVIO version 4 or 6 format. The channel

objects in the EMU read and write only in this format.

The input data is read, parsed, and broken up into individual EVIO events (top level

banks). These events are what are placed in the internal queues and FIFOs seen in the

first chapter's diagram. Thus, modules deal only with evio events directly. Similarly, the

output transport objects take the events from their queues and repackage them to be sent

in proper EVIO format.

So how does one go about the business of specifying all this data movement? Each EMU

is configured through an XML file with 2 major sections. Parts of the I/O config come in

both sections. One major section specifies data transport mechanisms while the other

specifies the modules. Under each module definition come individual data channels from

one of the defined transports. The following will walk the user through creating the I/O

portion of these config files.

3.1. Transports

One major part of a config file is contained in the single XML element, transports,

usually in the first lines. There are 4 different types of transports to the outside world that

may be used: cMsg, emu, ET, and files. And there is 1 type of transport between

modules, FIFOs. Each of these is configured quite differently. The xml element defining

a transport uses the name server.

3.1.1. FIFOs

The FIFO is a type of transport that is built into the EMU and needs no specification in

transports section of the config file.

3.1.2. Files

Specifying the parameters to define a file transport requires only 2 things:

1. the user-given name, and

2. the class which is always and exactly "File" (case sensitive).

<transports>

 <server name="myFile" class="File" />

</transports>

3.1.3. cMsg messages in cMsg domain

Specifying the parameters to define a cMsg transport requires 3 things:

1. the user-given name which will also be used as the cMsg client name and

therefore must be unique to the cMsg server,

2. the cMsg udl used to connect to the cMsg server and

3. the class which is always and exactly "Cmsg" (case sensitive)

The udl may be set to “platform” in which case the udl is internally set to the cMsg

server inside the run control platform being used and the namespace is set to “CODA”.

See the cMsg documentation to learn more about the format of udls. In practice, this

transport in never used in CODA as the cMsg pub/sub system was designed for the low-

rate sending of small messages, not high-speed data acquisition.

<transports>

 <server name="mycMsg" udl="cMsg://host:port/cMsg/nspace" class="Cmsg" />

 <server name="yourcMsg" udl="platform" class="Cmsg" />

</transports>

3.1.4. Sockets in cMsg emu domain

Specifying the parameters to define a cMsg, emu domain transport when receiving data

requires 3 things:

1. the user-given name which will also be referred to by any channels that use it,

2. the TCP port number used for communication, and

3. the class which is always and exactly "Emu" (case sensitive).

Note that the xml element name is client since it is receiving data even though it acts, in

fact, as a TCP server awaiting connections from DAQ components upstream. A unique

port is required for each component in the DAQ system that uses this protocol. If a port is

not specified, it defaults to 46100.

<transports>

 <client name="emuSocket1" port="46101" class="Emu" />

</transports>

When sending data with this transport, the port does not need to be set (since that is set in

the channel) and the xml element name is server since it is sending data.

<transports>

 <server name="emuSocket1” class="Emu" />

</transports>

To go into a little more detail, a downstream component, say an EB, will start such a

server in the transport object’s download transition which behaves somewhat like an rc

multicast server. When it starts up, it starts 2 servers, a UDP and a TCP server. The UDP

server then listens for multicasts, but only accepts packets from upstream components in

the configuration which must connect to it, say Roc1. (Thus, multiple sessions can

coexist with servers of the same port & EXPID if they serve different components). It

sends a packet back to the upstream component (say Roc1) with enough information so

that it can make a connection to the TCP server. It stays this way until prestart when

Roc1’s output channel will connect to the TCP server and send data over that socket. See

the section below on the cMsg emu domain channel for more info.

It is also possible to bypass the step of multicasting to find the listening TCP server and

connect to the TCP server directly by specifying its host and port. In practice, this is what

is now done in CODA since it’s much more efficient and less time consuming. In the

download transition, the upstream component (say Roc1) will receive the necessary host

and port from run control to make a direct TCP connection. More on this in the emu

channel section.

3.1.5. ET

The EMU uses the ET system in 2 different ways. In the first, the EMU "owns" an ET

system. It creates the ET system, uses it, and removes it when finished. The second

method is to simply connect to an existing system, use it, then disconnect when finished.

The xml element defining an ET transport uses the name server. The following is a table

containing each of its xml attributes (case sensitive), whether it's required, its meaning,

and its acceptable values:

Attribute Required Function Allowed Value(s)

All ET systems

name ✓ User given name of transport Any string.

class ✓ Java class for transport object The exact string, "Et".

etName ET system name Et file name. Defaults to

/tmp/<EXPID>_<EMU name>, where

EXPID is an environmental variable or

given on command line

create Does EMU create the ET

system?

Case indep. "true", "on", or "yes".

Anything else is false. Default = false.

port TCP port.

Integer > 1023 and < 65536. Defaults to

11111.

uPort UDP port. Integer > 1023 and < 65536. Defaults to

broadcasting port, 11111.

wait How many seconds to wait for

an ET system when connecting

Integer >= 0 seconds. Defaults to 0.

mAddr Multicast address Any valid multicast address. Needed only if

method = "mcast" or "cast".

When creating ET systems

type Create java-based or C-based

ET sys.

The case indep. string “java” for java-

based, else C-based.

eventNum ✓ Number of events. Integer > 0.

eventSize ✓ Size of event data in bytes. Integer > 0.

groups Number of groups to divide

events into.

Integer > 0 and <= eventNum. Defaults to

1.

revBuf TCP receive buffer byte size. Integer >= 0. Value of 0 gives operating

system default. Defaults to 0.

sendBuf TCP send buffer byte size. Integer >= 0. Value of 0 gives operating

system default. Defaults to 0.

noDelay TCP NODELAY value Case indep. "true", "on", or "yes".

Anything else is false. Default = false.

When connecting to existing ET systems

method Method to connect with. Case indep "direct" for direct to server,

"mcast" for multicasting, "bcast" for

broadcasting, "cast" for both.

host Host running ET system. Case indep "anywhere", "remote", "local"

denotes where on network to look for ET.

Or name of host. Defaults to "anywhere".

bAddr Broadcast address. Any valid broadcast address. Needed only

if method = "bcast" or "cast".

subnet Preferred IP address / subnet to

use for ET communication if

possible.

May be preferred IP address of local host

which is used to for ET I/O. May also be

broadcast address of subnet preferred for

communication which gets changed to host

IP address on that subnet if possible.

Now for a few examples. The following is an example of a config file entry that can be

used to have the EMU create and control an ET system:

<transports>

 <server name="myEt" class="Et" etName="/tmp/Eb1" create="true"

 port="54321" uPort="12345" eventNum="1000" eventSize="2100000"

 groups="2" wait="10" recvBuf="3000000" sendBuf="130000"/>

</transports>

Notice that method and host are not defined. The EMU will automatically attach to

created ET systems using a direct connection to a local host since the TCP server port is

known and the host must be local by definition.

When not creating an ET system, omit the "created" attribute. In such cases, the attributes

of eventNum, eventSize, groups, revBuf, and sendBuf are all ignored. Following is the

simplest possible entry for attaching to an existing system since it uses all the defaults:

<transports>

 <server name="myEt" class="Et />

</transports>

In this case the EMU needs to be run with the "-Dexpid=..." command line argument or

the environmental variable EXPID needs to be defined (command line takes precedence).

The reason is that if not given, the ET system name is automatically generated as

/tmp/<expid>_<emu name>.

To make a direct connection to an existing ET system on a known host and port, do

something like:

<transports>

 <server name="myET" class="Et" etName="/tmp/myET" host="myHost"

 method="direct" port="12376"/>

</transports>

In such cases it is meaningless to specify attributes like the number and size of events,

since for an existing system they are already defined and the EMU will just ignore them.

3.2. Channels

For each transport, multiple channels can be created. These are designated in the config

files as inchannel or outchannel xml elements depending on which way the data flows.

These elements are associated with and defined under the elements for each module.

Where exactly they belong in the file will be seen later, but for now we'll only look at the

individual channels.

3.2.1. FIFOs

Since FIFOs are only used between modules, they are not allowed to be specified as input

to the first module and an exception will be thrown if that's the case. Although not

prohibited, placing a FIFO after the last module guarantees that the data will not flow

through the EMU once that FIFO is full.

In order to keep the data flow from getting ridiculously complex, if a module has a fifo as

its output channel, then it may only have ONE output channel. Likewise, if a module has

a fifo as its input channel, then it may only have ONE input channel.

For modules to use FIFOs to pass data between them, one does something like this:

 <modules src="modules.jar" usr_src="user_modules.jar">

 <InModule class="someClass1">

 <inchannel id="1" name="a" transp="myFile" fileName="a" />

 <outchannel name="F1" transp="Fifo"/>

 </InModule>

 <MidModule class="someClass2">

 <inchannel name="F1" transp="Fifo"/>

 <outchannel name="F2" transp="Fifo"/>

 </MidModule>

 <OutModule class="someClass4">

 <inchannel name="F2" transp="Fifo"/>

 <outchannel id="2" name="b" transp="myFile" fileName="b" />

 </OutModule>

 </modules>

Simply name a FIFO by using the name attribute of a channel and specify the transp

attribute as being exactly "Fifo". Make one module's output channel fifo the same as the

next module's input channel fifo and data will flow from one to the other.

3.2.2. Files

For a module to define a particular file as an output one does this:

<outchannel id="0" name="me" transp="myFile" fileName="$(DIR)/a%d"

 split="10000" />

While an input file (seldom used) looks like:

<inchannel id="0" name="me" transp="myFile" fileName="abc" />

Here is a list of all the file channel attributes and what they do:

Attribute Required In/Out Function Allowed Value(s)

id both User given id of channel. Any integer. Defaults to 0.

name ✓ both User given name of

channel.

Any string.

transp ✓ both Name of the transport to

use.

An already defined transport's

name.

ringSize in Ring buffer capacity for

parsed evio events from

file.

Power of 2. Defaults to 4096. Min

is 128.

fileName both Name of file to write or

read.

A valid file name. May contain

wildcards. For details see below.

Defaults to the automatically

generated name.

split out Number of bytes at which

to create & start writing to

another file.

Any non-negative integer.

Defaults to 0 which means do not

split the file. Negative values are

ignored.

dir out Directory in which to write. Valid directory. Not used by

default.

dictionary both Name of file containing

evio format xml dictionary.

A valid file name.

compression out Compress the output 0 = no compression (default),

1 = lz4

2 = lz4 best

3 = gzip

compressionThreads out Number of threads used to

do data compression

> 0. Defaults to 1.

evioRamBuffer out Bytes specified for each

of the evio writer's

internal buffers

Minimum value of and defaults to

64Mbytes. 3 buffers of this size

are created.

The most complicated part of the file channel is the default values of and the automatic

generating of the file name. Let's start with splitting the file. In order to prevent output

files from getting too large, they can be split into smaller ones. This happens when the

user specifies a positive value for the split attribute which specifies the maximum file size

in bytes before it is closed and the next one created. A negative or zero value means no

splitting takes place. When files are split, each created file has a different integer number

appended to or placed somewhere in its name to differentiate it from the previous one.

This number starts at 0 and increases by 1 for each subsequent file and is called the split

count.

The rules for automatic naming of files are built into evio and are as follows. The base

file name may contain up to 3, C-style integer format specifiers using “d” and “x” (such

as %03d, or %x). If more than 3 are found, an exception will be thrown. If no "0"

precedes any integer between the "%" and the "d" or "x" of the format specifier, it will be

added automatically in order to avoid spaces in the generated name. The first occurrence

will be substituted with the given run number. If the file is being split, the second will be

substituted with the split count. If there are multiple streams, the third will be substituted

with the stream id (this id is given to the emu by run control when there are multiple,

parallel data streams).

If no specifier for the split count exists, it is tacked onto the end of the file name. If no

specifier for the stream id exists, it is tacked onto the end of the file name, after the split

count. No run numbers are ever tacked on without a specifier.

For splitting: if there is only 1 stream, no stream ids are used and any third specifier is

removed.

For non-splitting: if there is only 1 stream, no stream ids are used and any second and

third specifiers are removed. For multiple streams, the second specifier is removed and

the 3rd substituted with the stream id.

For all cases: if there are more than 3 specifiers, NO SUBSTITUTIONS ARE DONE.

The base file name may contain characters of the form “$(ENV_VAR)” which will be

substituted with the value of the associated environmental variable or a blank string if

none is found. It may also contain occurrences of the string "%s" which will be

substituted with the value of the run type or nothing if the run type is null.

If no fileName is given, for input files it defaults to reading from codaDataFile.evio. For

output files, it defaults to writing to <session>_<run#>.dat<file_count> where session

refers to its session name received from run control. If dir is defined then it writes to a

file of the generated name in that directory and it reads codaDataFile.evio from that

directory as well.

If, on the other hand, fileName is given, then the first thing that happens is that all

substitutions mentioned above are made. For input files, it reads from that file (in the

directory dir if given). For output files, it writes to that file (in the directory dir if given).

If this is all too stinkin’ complicated, play with the evio

org.jlab.coda.jevio.Utilities.generateBaseFileName () method followed by calling the

generateFileName() method. The first provides input for the second and the second

returns the final file name. See the evio javadocs.

3.2.3. cMsg – cMsg domain

For a module to define a particular cMsg server as an output one does this:

<outchannel id="0" name="me" transp="mycMsg subject="a" type="b" />

While an input cMsg subscription looks like:

<inchannel id="0" name="me" transp="mycMsg" subject="sub" type="*" />

Here is a list of all the cMsg channel attributes and what they do:

Attribute Required In/Out Function Allowed Value(s)

id both User given id of channel. Any integer. Defaults to 0.

name ✓ both User given name of channel. Any string.

transp ✓ both Name of the transport to use. An already defined transport's name.

ringSize in Ring buffer capacity for

parsed evio events from cMsg.

Power of 2. Defaults to 4096. Min is

128.

single out If true, each evio event sent

out in single cMsg msg, else

events marshalled into 1 msg.

Case indep. "true", "on", or "yes".

Anything else is false. Default = false

subject both cMsg subscription subject for

inchannel. cMsg message

subject for outchannel.

Valid cMsg subject. Subscription

subject may contain wildcard chars.

type both cMsg subscription type for

inchannel. cMsg message type

for outchannel.

Valid cMsg type. Subscription type

may contain wildcard chars.

wthreads out Number of cMsg message

buffer filling threads

Positive int which defaults to 1. Max

is 10.

A note on the input channel’s subject and type. In the cMsg domain, the wildcard

characters “*”, “?”, and “#” are allowed in subscriptions’ subject and type, where “*”

matches any number of characters, “?” matches a single character, and “#” matches one

or no positive integer. Also, wildcard constructs like {i>5 | i=4} can be used to match a

range of positive integers which meet the conditions in the parentheses. The logic

symbols >, <, =, |, & are allowed along with the letter i, any positive integers, and spaces.

As an example, a subscription to the subject abc{i>22 & i<26} will match a message

with the subjects abc23, abc24, and abc25.

3.2.4. cMsg – emu domain

For a module to define a particular emu socket output channel one does something like:

<outchannel id="0" name="me" transp="myEmu timeout=”5” port=”46123”

maxBuf=”256000” />

While an emu socket input channel looks like:

<inchannel id="0" name="me" transp="myEmu" />

Here is a list of all the emu domain channel attributes and what they do:

Attribute Required In/Out Function Allowed Value(s)

id both User given id of channel. Any integer. Defaults to 0.

name ✓ both User given name of channel. Any string.

transp ✓ both Name of the transport to use. An already defined transport's name.

ringSize in Ring buffer capacity for

parsed evio events from cMsg.

Power of 2. Defaults to 4096. Min is

128.

single out If true, each evio event sent

out immediately over socket,

else events marshalled before

sending.

Case indep. "true", "on", or "yes".

Anything else is false. Default = false

recvBuf in TCP socket receive buffer

byte size.

Integer >= 0. Value of 0 gives

operating system default. Defaults to

0.

sendBuf out TCP socket send buffer byte

size.

Integer >= 0. Value of 0 gives

operating system default. Defaults to

0.

noDelay out TCP NODELAY value. Case indep. "true", "on", or "yes".

Anything else is false. Default =

false.

subnet out If is a local IP address, it is

used for outgoing traffic. If

subnet address, local IP

address on that subnet is

chosen, if any.

Dotted-decimal format IP address.

maxBuf out Internal buffer size for

sending.

Max size in bytes of a single send

and defaults to 2.1MB.

port out UDP socket to multicast to

when finding emu server..

Integer > 1023 and < 65536. Defaults

to 46100.

timeout out Time in seconds to wait for

connecting to emu server

Any non-negative integer. Defaults

to 3.

sockets both Number of TCP sockets to

move data in each channel.

> 0. Defaults to 1.

In download, the emu domain transport object will have created a server for the

downstream component, say an EB. In prestart the upstream component, say a ROC,

module will create its output channel by making a TCP connection to this server. The

UDL used to make the connection is:

emu://port/expid/compName?codaId=id&timeout=timeout&bufSize=maxBuf&tcpSend=sendBuf

 &subnet=subnet&noDelay

where “port” is the TCP port to use when creating the socket, “compName” is the name

of the destination CODA component, “timeout” is the time to wait in seconds for

connecting to emu server and defaults to 3 seconds, “bufSize” is the max size in bytes of

a single send and defaults to 2.1MB, “tcpSend” is the TCP send buffer size in bytes,

“subnet” is the preferred subnet (broadcast) IP address used to connect to server, and

“noDelay” is the TCP no-delay parameter turned on.

3.2.5. ET

For a module, for example an EMU-based ROC, sending output to a particular ET

system:

<outchannel id="1" name="EB" transp="myET" capacity="24" group="1" chunk="6"

 recvBuf="350000" sendBuf="350000" noDelay="on" />

While input from an ET system, for an EB for example, looks like:

<inchannel id="1" name="Roc1" transp="myEt" stationName="stat1"

 position="1" idFilter="on" chunk="1"/>

Here is a list of all the ET channel attributes and what they do:

Attribute Required In/Out Function Allowed Value(s)

id both User given id of channel. Any integer. Defaults to 0.

name ✓ both User given name of channel. Any string.

transp ✓ both Name of the transport to use. An already defined transport's

name.

ringSize in Ring buffer capacity for parsed

evio events from ET.

Power of 2. Defaults to 4096.

Min is 128.

single out If true, each evio event sent out in

single ET buffer, else evio events

marshalled into 1 ET buffer.

Case indep. "true", "on", or

"yes". Anything else is false.

Default = false.

revBuf both ET consumer's TCP receive buffer

byte size.

Integer >= 0. Value of 0 gives

operating system default.

Defaults to 0.

sendBuf both ET consumer's TCP send buffer

byte size.

Integer >= 0. Value of 0 gives

operating system default.

Defaults to 0.

noDelay both ET consumer's TCP NODELAY

value.

Case indep. "true", "on", or

"yes". Anything else is false.

Default = false.

group out Group from which to obtain new

(unused) events.

Integer > 0. Defaults to 1.

chunk both How many events to get at once (in

an array).

Integer > 0. Defaults to 100.

stationName in Name of station to attach to and to

create if non-existing.

Any string with < 48

characters. If inchannel,

defaults to station<id>. If

outchannel,

GRAND_CENTRAL is used.

position in Set position of existing or created

station.

Integer > 0. Defaults to 1.

GRAND_CENTRAL has

reserved position of 0.

idFilter in Station only accepts events from

component with this coda id.

Case indep. "on", everything

else is off. Default is off.

controlFilter in Allow only control events into

station. Overrides idFilter.

Case indep. "on", everything

else is off. Default is off.

prescale out Used only in ER. Any ET output

channel receives a prescaled

number of the physics events (i.e. if

prescale = 3, only every 3rd event is

sent over the channel).

> 0. Defaults to 1.

ignoreDataErrors

 in Any error reading/parsing data can

be ignored if true. Currently this is

only implemented for ER's ET

input channel if the main data is

coming over an emu socket input

channel.

Case indep. "true", "on", or

"yes". Anything else is false.

Default = false.

3.2.6. Event Recorder – special rules

There are a number of special rules that apply to the Event Recorder’s handling of

channels. There is no restriction on a single input channel. However, there should never

be more than 2 input channels in which case one must be an emu socket and the other an

ET channel. The emu socket is assumed to carry the main flow of physics events. Any ET

input channel is assumed to carry user events and is given a lower priority. This means

reading from it should never block.

The only output channel types allowed are ET and file. A maximum of 1 ET output

channel is permitted. All control and “first” events are sent over all channels. Any “first”

event coming before the prestart event is placed after it instead. User events, however, are

placed only into the first file channel. If no file channels exist, they’re placed into the ET

channel. A prescaled number of output physics events are sent over the ET channel.

Whereas physics events are sent round-robin to all file channels.

Chapter 4

4 Modules

Modules are the heart of an EMU and perform all the data processing tasks. While

modules can theoretically be written by anyone, in practice it is not a simple thing to do

and is best left to the Jefferson Lab DAQ group. This chapter covers the modules written

and supported by the DAQ group. Although it is possible to string multiple modules

together in a single EMU, this capability is currently unneeded and unused. Each EMU

used in the DAQ system contains a single module.

Modules are implemented as objects created from dynamically loaded Java classes. One

benefit of this design is that module behavior can be changed in fully operational CODA

DAQ systems without stopping to recompile and restart the software, facilitating quick

software development. During the download transition, all existing modules are removed

and new ones are created. Thus all the user needs to do is to modify any module code,

compile it, then use run control to issue a download command. The newly modified

module will be used automatically.

The JLAB DAQ group provides the modules necessary for creating a functional data

acquisition system. These include modules to implement: 1) an event builder, 2) an event

recorder, 3) a simulated ROC, 4) a simulated trigger supervisor, and 5) a farm controller.

4.1. Config File

An EMU's configuration file has 2 sections. The previous chapter dealt with the first

section on transports. This chapter deals with the second section on modules. The xml

element used is not surprisingly named modules. It is used to configure all the modules

used in a single EMU. The following is an example from a config file for an event

builder.

 <modules>

 <EbModule class="EventBuilding" id="2" timeStats="off" runData="false"

 tsCheck="true" tsSlop="2" sparsify="false" >

 <inchannel id="0" name="Roc1" transp="inET" idFilter="on" />

 <inchannel id="2" name="Roc2" transp="inET" idFilter="on" />

 <outchannel id="4" name="Er1" transp="outET" group="1" chunk="5 />

 </EbModule>

 </modules>

The classes used to implement the supported modules are all included the emu jar file,

emu-3.3.jar. This jar file must be in the user's CLASSPATH environmental variable in

order for Java to find them. If a user-supplied class is being used instead, its full name

must be specified in the class attribute in the xml element defining the module

(EbModule in the example above). The jar file which contains it must also be in the

user’s CLASSPATH.

Under the <modules> element are elements for each of the modules to be loaded.

Modules' element names (EbModule in the above example) are used only for readability

and may be set by the user to any string. Attributes for each module are what determines

its behavior and depend entirely upon the module itself. Currently, all DAQ-provided

modules only have inchannel and outchannel subelements to determine its input and

output data channels.

4.2. Fast Event Builder

The event building module implements all the functionality of an event builder. This

module can function as a data concentrator (DC) which is the first level builder of a 2-

stage event building. It can function as a stage event builder (SEB) which is the second

level of a 2-stage event building. It also can function as a primary event builder (PEB)

which is a single, stand-alone event builder that does a complete build. A rough outline of

this module's internal structure is given in Figure 2 below.

Figure 4.1 Event Builder Internals

Everything inside the center purple box in the figure above represents the event building

module. Rings are fast circular buffers which take the place of queues used in previous

versions of this software package.

If this module is used to build ROC raw events, each ROC will have its own input

channel. If it's used as a second-level event builder, each first-level EB will have its own

input channel. In any case, a single event from each input channel will be needed to build

a complete event.

This is accomplished by the building threads - the number of which is determined by the

config file. If not explicitly set it defaults to 2. Each thread will grab an event from each

channel’s ring, build them into a single event and place that built event on an output

channel's ring. If more than one output channel exists, the physics events are placed in

output channels in round-robin fashion.

User events are not built but simply passed on to the first ring of the first output channel.

Any control events must appear on each input ring in the same position. If not, an

exception is thrown. If so, the control event is passed along to all output channels. If no

output channels are defined in the config file and no additional modules follow it, this

module discards all built events.

The user should be aware that this module can act as an event recorder in addition to its

ability to build. Simply set its output channel to be a file.

Some of the details of the event building can be controlled through the configuration file.

Following is a list of the module's attributes that can be set:

Attribute Required Function Allowed Value(s)

id CODA id of event builder Any non-negative integer. Defaults to 0.

class ✓ Name of Java class defining

this module.

Must be exactly "EventBuilding".

threads Number of event building threads. Any positive integer. If not given, EB

will have 2.

endian Endianness of output data. Set to case indep. “little” for little

endian, else big. Default is big.

repStats Does this module’s stats accurately

represent the whole EMU?

Case indep. "false", "off", or "no".

Anything else is true. Default = true.

timeStats Make histogram of time to build

single events (in nsec). Printed in

console during END transition.

Yes, true, on (case insensitive) to make

histogram. Default is off since it kills

performance.

ringCount Number of internal, reusable

ByteBuffers in which to place built

events in each build thread.

Will be made a power of 2. Default =

256/threads (64 for 3 thds), min 16.

tsCheck Check consistency of timestamps.

Throw exception if inconsistent.

No, false, off (case insensitive) to not

check. Default is on.

tsSlop Maximum allowed differences

(slop) in timestamps in ticks.

Any positive integer, ignores other

values. Defaults to 2.

sparsify If on, do not include roc-specific

segments in trigger bank.

Yes, true, on (case insensitive) to

sparsify. Default is off.

runData Include run number and run type

in built trigger bank.

Yes, in, true, on (case insensitive) to

include data. Default is off.

releaseThd Create 1 post-build thread per

in channel used to release its

ring slots in sequence. Obsolete

since now using sequential

release ByteBufferSupply.

Yes, in, true, on (case insensitive) to

include data. Default is off. Keep this

off.

4.3. Event Recording

One benefit of abstracting out the data communication from the modules is that the event

recorder becomes trivial to implement. All the real work is done in the I/O transports and

channels. The event recording module uses a single thread to funnel all input events into

all of the output channels.

There are a number of special rules that apply to the Event Recorder’s handling of

channels. There is no restriction on a single input channel. However, there should never

be more than 2 input channels in which case one must be an emu socket and the other an

ET channel. The emu socket is assumed to carry the main flow of physics events. Any ET

input channel is assumed to carry user events and is given a lower priority. This means

reading from it should never block.

The only output channel types allowed are ET and file. A maximum of 1 ET output

channel is permitted. All control and “first” events are sent over all channels. Any “first”

event coming before the prestart event is placed after it instead. User events, however, are

placed only into the first file channel. If no file channels exist, they’re placed into the ET

channel. A prescaled number of output physics events are sent over the ET channel.

Whereas physics events are sent round-robin to all file channels.

Following is a list of the module's attributes that can be set:

Attribute Required Function Allowed Value(s)

id CODA id of event recorder Any non-negative integer. Defaults to 0.

class ✓ Name of Java class defining this

module.

Must be "EventRecording" which is

the Java class name.
repStats Does this module’s stats accurately

represent the whole EMU?

Case indep. "false", "off", or "no".

Anything else is true. Default = true.

4.4. ROC Simulation

This was written merely for testing purposes. In cases when an actual data-producing

ROC is unavailable, this module will provide an EMU-based ROC which generates ROC

raw records. Having such a ROC allows testing of CODA components downstream such

as event builders and event recorders.

The data in each record/event are all 1’s except the very first word which is the event

number. There is an option to use real data from Hall D. There are 9 files, each

containing 16MB of data which is enough to fill the entire ring buffer with data for a

more realistic simulation or a single ROC. This option is set by hand editing the

useRealData variable in ROCSimulation.java’s constructor. It’s set to true by default.

The data-loading algorithm will try to match the data file name’s ending number with the

ROC name’s ending number. Thus, ROC1 – ROC9 can each have unique data. You may

have to hack it to get it work for you.

As an aside, since it’s too much work to have jcedit and config files modified each time a

new variable is added to modify behavior, the normal mode of operation is to edit this

module’s code and make another the jar file for testing purposes.

In order for any simulation to work properly, all ROCs must have sent the same number

of events when the run control commands to end or reset are given. This is done by

having ROCs sync with each other through a simulated Trigger Supervisor every 20k

events through sending cMsg messages - a poor man's trigger. For more detail, go here.

ROC emus are automatically set to sync by means of a TsSimulation (trigger supervisor)

emu. If you wish to run without the simulated TS, which works fine if there’s only 1

ROC, add

 sync=”off”

to the ROC module’s config file or else your ROCs will sit around all day waiting to

communicate with the TS.

There are some parameters the user can control in the following table:

Attribute Required Function Allowed Value(s)

id CODA id of ROC Any non-negative integer. Defaults to 0.

class ✓ Name of Java class defining

this module.

Must be "RocSimulation" which is

the Java class name.
threads Number of data generating

threads.

Positive integer. Defaults to 1. Values <

1 get set to 1.

triggerType Trigger type from trigger

supervisor.

Integer between 0 and 15 inclusive.

Defaults to 15. Negative values set it to

0, over 15 gets set to 15.

detectorId Id of detector producing data in

data block bank.

Integer >= 0. Defaults to 111. Negative

values set it to 0.

blockSize Number of events in one

(entangled) data block.

Integer between 1 and 255 inclusive.

Defaults to 40. Values < 1 set it to 1,

over 255gets set to 255.

eventSize Number of bytes in a single event Positive integer. Defaults to 75, min = 1

syncCount Number of writes of a single,

entangled block of evio events,

before syncing with other

simulated ROCs.

Positive integer. Defaults to 20k, min is

10.

sync Do we sync this with other

simulated ROCs?

Case indep. "false", "off", or "no".

Anything else is true. Default = true.

4.5. Trigger Supervisor Simulation

This was written merely for testing purposes. In cases when actual data-producing ROCs

are unavailable, this module will provide a trigger for EMU-based ROCs. Having such a

system allows testing of CODA components downstream such as event builders and

event recorders.

In order for any simulation to work properly, all ROCs must have sent the same number

of events when the run control commands to end or reset are given. This is done by

having ROCs sync with each other through this simulated Trigger Supervisor every 20k

events by sending cMsg messages - a poor man's trigger. For more detail, go here.

The TS config file must contain a list of ROCs to synchronize as attributes as in the

example below:

 <modules>

 <TsModule class="TsSimulation" r1="Roc1" r2="Roc7" />

 </modules>

Starting with r1 and going up sequentially in number, each ROC name is identified.

These will be the ROCs that will be synchronized to each other. The following are

parameters that can be set:

Attribute Required Function Allowed Value(s)

id CODA id of trigger supervisor Any non-negative integer. Defaults to 0.

class ✓ Name of Java class defining

this module.

Must be "TsSimulation" which is the

Java class name.
rN ✓ Identify all ROCs to sync. “r” followed by a sequential number

(starting with 1) equals ROC’s name. Use

as many times as there are ROCs (e.g.

r1=”Roc1” r2=”Roc7” r3=”myRoc”).

4.6. Farm Controller

This is a simple emu designed to work with an ET system for input and to pass events

right through much as an ER. The farm controller is set up to consume only control

events from its input channels (hopefully only one channel) and pass it through to all

output channels (also hopefully only one). The ET input channel needs to have the

attribute:

 controlFilter=”on”

in order to accept only control events. The physics events are all handled by the farm

nodes.

Attribute Required Function Allowed Value(s)

id CODA id of farm controller. Any non-negative integer. Defaults to 0.

class ✓ Name of Java class defining

this module.

Must be "FarmController" which is the

Java class name.

Chapter 5

5 Running an EMU with Run Control

Figure 5.1 A running emu

Emus run pretty fast. When they reach their top speed, we say they’re smokin’.

Figure 5.2 A smokin’ emu

The running of an EMU is very easy. Configuring it with jcedit may be challenging, but

actually running it is simple. Although several can be run in a JVM simultaneously, in

CODA only 1 emu is ever run in a single JVM.

5.1. Config File Final Form

Each configuration file may specify a single EMU to be run in a single JVM. In outline

form it looks like:

<?xml version="1.0"?>

<component name="EB" type="SEB" >

 <transports>

 ...

 </transports>

 <modules>

 ...

 </modules>

</component>

The previous 2 chapters explain in some detail the nature of the xml entries under

transports and modules. The component element has 2 attributes, name, which must be

present and unique in run control, and also type which is the CODA type and is optional

(see Appendix A for values allowed).

5.2. Creating EMUs

EMUs are created using the EmuFactory class which does the work of sorting through

command line arguments, reading and parsing config files, and starting up all the EMUs

that are indicated in these arguments. To run it execute,

 java org.jlab.coda.emu.EmuFactory

where the following options are allowed and the “-D” options need to precede the class

name:

Argument Required Function

-h or -help Print help.

-Dname Name of CODA component to create. Can be list of names

separated by “,”, “:”, or “;” for multiple components.
-Dtype Type of CODA component to create. See Appendix A. Can be list

of types corresponding to list of names separated by “,”, “:”, or “;”

for multiple components.

-DcmsgUDL ✓ cMsg UDL used to connect to the cMsg server the AFECS

platform is running.

-Dexpid Set the experimental id, overriding environmental variable EXPID

in EMU. If not set on cmd line or in env.var., default to

“unknown”. Used to generate default ET system name

(/tmp/<expid>_<emuName>). Used to construct default UDL

(rc://multicast/<expid>) to connect to platform cMsg server if

cmsgUDL not defined.

-Dsession Set the experimental session. Used to generate output file names.

Run control, if being used, sets the session, so this is useful only

when using the EMU with the debug gui.

-DDebugUI Start up a debug gui to run EMU without run control.

-Duser.name Arg passed to EMU objects which set user's for use in error

messages.

5.3. Platform connection

In order to place an EMU under run control, it must be able to connect to the desired

AFECS platform. This is done using the cmsgUDL option to specify the run control

domain cMsg server that's running inside the platform. That sounds complicated, but in

practice the user only needs to type:

java -DcmsgUDL="rc://multicast/<expid>" org.jlab.coda.emu.EmuFactory

where <expid> is replaced by the user's run control experiment id. This enables the

necessary communication. If the EMU is run but the platform is down, the EMU will

continue to try to connect until the platform comes up and it succeeds.

5.4. Running a single EMU

The only way to configure an EMU is by using the jcedit program to create config files

which are then passed to components by run control during the configure transition.

However, the user must provide the EMU's name on the command line, otherwise there is

no way for run control to know which configuration to send it. In addition, it is also

necessary to specify the component type on the command line. Although it is possible to

specify the type in the config file, jcedit currently does not do it. Do something like the

following to use run a single emu:

java -Dname=Eb -Dtype=SEB -DcmsgUDL="rc://multicast/myExpid"

 org.jlab.coda.emu.EmuFactory

5.5. Running Multiple EMUs

It is possible, for whatever reason, to run multiple EMUs in a single JVM. To do this the

names and types are specified as single strings with the individual components separated

by either colons, semicolons, or commas but not white space. Here's an example:

java -Dname=Roc,Eb,Er -Dtype=ROC,PEB,ER -DcmsgUDL="rc://multicast/myExpid"

 org.jlab.coda.emu.EmuFactory

This will run 3 EMUs in 1 JVM – a fake ROC, an EB and an ER.

Chapter 6

6 Running an EMU with the Debug GUI
EMUs can be run standalone - without run control - which may not appear to make much

sense on the surface of things since they are designed to respond to run control

commands. However, there is a gui used for debugging which is part of the EMU and can

be run by specifying -DDebugUI on the command line:

java -Dname=Roc1 -DDebugUI org/jlab/coda/emu/EmuFactory

This gui allows the user to send locally generated run control commands to the EMU and

see its output. It looks like:

The top panel of the application has a number of run control transition-inducing buttons

along with a few other run control commands. In the bottom panel is a listing of all the

EMU-produced debugging, info, warning, and error messages.

In the middle, the status window keeps track of a few stats and the input window allows

user input into the EMU. Type the desired config file name in the CONFIGURE input

widget and hit the CONFIGURE button to get it to load that file. The input to

PRESTART is the run number. And the input to the SET_INTERVAL sets the time

interval between status messages in seconds.

Once the configure button is pressed and the configuration is loaded, a new window

appears:

The new window simply shows what is in the loaded configuration. In this case there is

one ET transport with its name, host, connection method, ports, etc. specified. The

module to be loaded is also specified - the ROC simulation module. Under modules, its

output channel, the ET system, can also be seen. Notice the EMU's messages in the

bottom panel.

If running multiple EMUs in 1 JVM, there will be one gui per component.

Chapter 7

7 Developer's Details

There are many details concerning the internals of the EMU which are of no interest to

the general user. This chapter contains some such detail more as a reminder to the EMU

developer. Although comments are spread through the code itself, it's always nice to have

more coherent notes on the software that serve to jog the memories that lose much of the

finer points over time.

7.1. cMsg Run Control Connection

There's a cMsg connection in the rc domain maintained for receiving and responding to

run control commands as well as for sending dalogmsg messages. Generally the rc

multicast server being connected to resides in the AFECS platform. The general form of

the UDL used to connect to it is:

rc://<host>:<port>/<expid>?connectTO=<timeout>&ip=<address>

where:

• host is required and may also be "multicast", "localhost", or in dotted decimal

form

• port is optional with a default of 45200

• expid is the run control experiment id being used for the experiment currently

underway

• timeout is the time to wait in seconds before connect returns a timeout while

waiting for the rc server (in AFECS platform) to send a special (TCP) concluding

connect message. Defaults to 30 seconds.

• address is the IP address in dot-decimal format which the rc server or agent must

use when connecting to this rc client. This is sent to the rc server along with its

corresponding subnet address. If this is not set, then the rc client sends the rc

server all of its IP addresses and subnet addresses.

This UDL may be specified by the user when starting up the emu by giving the following

flag to the JVM:

–DcmsgUDL=<udl>

This is done for the user in the provided emu startup scripts with the value:

 –DcmsgUDL=rc://multicast/$EXPID

which is also the UDL used if not given when starting up an EMU directly.

7.2. Data Flow

In some sense the EMU is like a mini DAQ system in one program. To refresh your

memory a traditional DAQ originates data in a ROC, it flows through the EB and

eventually finishes with the ER storing it somewhere. To properly shut down such a

system, run control first informs the ROC to quit sending data. After which the EB is told

to end, and then finally the ER is told to do the same. Each component, however, must

wait for run control's end (or reset) event to come through before finally ending.

Similarly, the data flow through an EMU starts with the input channel. It goes through

the modules in order and then through the output channel. When an EMU is shut down,

the input channels/transports must be the first to end, followed by the modules in order

and finally the output channels/transports. All parts must wait for the end (or reset) event

to come through before finally ending.

7.3. ET Channels

When the ET system is used for data transport, it is usually done for performance

purposes. The ET channel software is, therefore, multithreaded in such a way as to

squeeze every last bit of speed out of it. The newly developed EtContainer class is used

to provide garbage-free Java code which performs well under heavy load. Next is a brief

description of both the input and output ET communication channels.

7.3.1. Output

Why not start with the most difficult part first? The ET output channel uses the interior

class, DataOutputHelper, to do all the work.

Figure 7.1 Et output channel internals

Figure 7.1 shows that it uses a fast ring buffer (see the next chapter) to do the

coordination between 3 different threads. This ring has 4 slots, each of which is an

EtContainer object containing “chunk” number of ET events (let’s call them buffers).

Note that each ET buffer will eventually house data in evio format and will usually

contain many evio events. I know, the double meaning of “event” is difficult.

• The “getter” thread gets “chunk” new buffers from ET and places them into one

of the 4 container entries of the ring.

• The “main” thread then claims one of these containers with new events, from the

ring. For each ET buffer in that container, the thread writes into it as many evio

events from the module’s output as it can hold. Remember, the module has

written evio events into this channel’s output rings (one output ring for each of the

module’s event processing threads). So going from ring to ring, in proper

sequence, this thread writes, in evio format, all the evio events from these output

rings. When done filling all ET buffers with data, it marks the container as being

ready to write. Note that for control and user events, each has its own ET buffer.

• Finally, there is “putter” thread which takes a full, ready-to-write container and

places all those ET buffers back into the ET system.

If one of the evio events is the END event, all threads shut themselves down as it passes

through. A reset command just stops all these threads.

7.3.2. Input

The ET input channel is a little simpler than the output. The input channel uses the

interior class DataInputHelper to do all the work with 2 threads. Similar to the output,

this channel has a ring of 2 EtContainers as seen in the next figure.

Figure 7.2 Et input channel internals

The getter thread gets an array of ET buffers in an EtContainer object to start with. The

main thread then takes a newly filled container from the ring of 2, and for each ET buffer

it copies the buffer, parses it, and places each resulting evio events into the channel’s

input ring. Finally, when all ET buffers are parsed, they’re returned to the ET system and

the container is marked for reuse. The input ring (not container ring) will be used as input

to the first module. If an END event appears, it is placed on the ring, all ET events are

returned and the thread exits.

Note that each ET buffer, when copied, is placed into a buffer provided from a ring-based

supply of reusable buffers. Because each parsed evio event contains a reference to the

buffer it was parsed from, the copy is necessary to prevent problems when the ET buffer

is put back into the ET system and eventually reused – thereby changing the underlying

buffer’s data.

7.4. cMsg Channels, cMsg domain

7.4.1. Output

The output channel uses the interior class DataOutputHelper to do all the work with 1

thread to do the dispatching and a pool of threads (2 by default) to do all the writing. The

number of writing threads can be set in the configuration by setting the wthreads attribute

in the outchannel element. The dispatching thread grabs evio events from the module and

stores them in ArrayLists (one for each writer) until either the count exceeds 1000 or the

total memory exceeds 256KB in which case the lists are passed off to the write threads

(control and user events get their own cMsg message). While the dispatching thread waits,

the write threads will write the evio events into cMsg messages’ byte arrays. When done,

the dispatching thread will send the messages. This is not the fastest way to do things but

that’s not important if using cMsg to begin with.

7.4.2. Input

cMsg input is a little simpler than the output. The input channel has a subscription to a

particular subject and type. The subject and type can be set as attributes in the

configuration’s inchannel element. If not explicitly set, the subject defaults to the name

(attribute) of the inchannel and the type defaults to "data". Each time a message arrives,

the subscription's callback is run and it parses the message's byte array and places the

resulting banks on the channel's ring. The ring will be used as input to the first module.

If an END event appears, it is placed on the ring. The callback does nothing else, but the

emu unsubscribes and then disconnects when the END or RESET commands reach the

channel and the transport object.

7.5. cMsg Channels, emu domain

This channel was designed as a way to simplify the communication between the various

DAQ components by using TCP sockets in a straightforward manner. But even the best

of intentions go astray. The code implementing this is split between 2 libraries. The cMsg

library contains the code to be an emu domain client – a process that connects to an emu

domain server downstream and sends it data. On the other hand, the code implementing

the server side is in the emu library since it was much easier to program it that way and it

had access to the emu internals.

During initial testing, it became apparent that there was a bottleneck in the CPU

processing power available to handle a single TCP socket which, in turn, limited the data

rate between components. This was overcome by implementing multiple sockets to

handle the data over 1 channel. This is configurable thru the “sockets” attribute in the

config file and is settable in jcedit.

7.5.1. Output

The output is handled by a single DataOutputHelper thread that grabs evio events from

the module placed in the output rings. Say there are 2 output TCP sockets. Each socket

has its own associated ByteBufferSupply and sending thread. Each ByteBuffer supply is

based on and acts as a ring buffer. The helper thread writes its evio events into a buffer

from one of the sending threads and when full, it signals that sending thread to write the

data over TCP. The next buffer written into will be from the next socket/sending-thread

up in round robin fashion. Keeping things round-robin allows order to be preserved on

the receiving end. Note that user or control events are always written into their own,

exclusive buffer.

7.5.2. Input

The input is handled by (possibly) multiple DataInputHelper threads, each of which reads

a single socket. Each input thread has an associated ByteBufferSupply which is also a

ring buffer. A single input thread first reads a command, a size, then a buffer of data from

the socket into a buffer from the supply. Based on the command, it will either continue

parsing the buffer or realize it’s an END event and exit.

Once the buffer is read into the supply, a single parser-merger thread will parse the buffer

into evio events, merging everything from all the input threads. These evio events are

placed into the channel’s input ring from which the module will take data.

7.6. Simulated ROCs and TS

In cases when it’s necessary to test a DAQ system but actual data-producing ROCs are

and trigger supervisors are unavailable, EMU-based ROCs and TS’s can be used. In order

for such a simulation to work properly, all ROCs must have produced the same number

of events when the run control commands to END or RESET are given, otherwise the EB

will throw an exception. This is done by having ROCs sync with each other through the

simulated Trigger Supervisor after every fixed number of events (20k by default) by

sending cMsg messages - a poor man's trigger.

7.6.1. Trigger Supervisor

The TS is given a list of expected ROCs to sync in its configuration file. Using the

platform’s cMsg server (cMsg domain), it subscribes during prestart in the “RocSync”

namespace to:

subject = “syncFromRoc”, type = “*”

This subscription’s callback receives messages from the ROCs. From each message it

gets the ROC’s name from the “type” and whether that ROC has received the END

command from run control or not from the “user int” (1 if END received, else 0). If all

expected ROCs send such a message, then the callback sends a message back to all ROCs

with:

subject = “sync”, type = “ROC”

If all ROCs have indicated that they have received the END command, then this message

is sent with a user int of 1 meaning “stop sending events”, else it’s sent with a user int of

0 meaning “send the next batch of events”. It then waits for another round of messages

from the ROCs.

7.6.2. ROCs

In prestart, each simulated ROC connects to the platform’s cMsg server and subscribes in

the “RocSync” namespace to:

subject = “sync”, type = “ROC”

Once the GO command is received from run control, the ROC will start writing events.

Once it has reached the predetermined limit (20k by default), it will stop and send a

message to:

subject = “syncFromRoc”, type = “<roc name>”

where <roc name> is its actual name. If it has received the END command from run

control, the message’s “user int” is 1, else it’s 0. Then it waits for an incoming message

from the TS. The TS responds when all ROCs have finished their batch of events and

sent their message. If that TS message contains a “user int” of 1, then the ROC quits

producing events and ends, otherwise it writes another batch of events.

The END command actually gets blocked and waits until the writing thread gets the TS

message to end things. At that point the writing thread allows the END command to

proceed.

It is probable that each ROC receives the END command at a different point in its

production of events. Yet this system allows all ROCs to end after having produced the

exact same number of events. Say for example, that in a 2 ROC configuration, the first

ROC got an END after 295k events. It stopped after 300k, sent its message to the TS and

waited for a response. Roc2, on the other hand, stopped at 300k but had not yet gotten an

END. It also sent its message but indicated that it had no END and then waited for the TS

response. The TS got the first ROC’s message, but was waiting until the second also

reported. When the TS had received both messages, one had not yet received an END so

the TS told both to write another round of events. The second ROC eventually got an

END but at event 310k. Thus when both stopped producing at 400k, the TS received their

messages and realized that both had gotten the END and told them to end their event

production. In this way all ROCs end up having produced the identical number of events

and the EB will end nicely.

7.7. Simulated Fixed-Rate ROCs and TS

As in the previous section, there are cases when it’s necessary or convenient to test a

DAQ system with EMU-based ROCs and TSs. And having a ROC that produces data at a

pre-determined fixed rate can be advantageous. Having such a ROC also requires a

special TS designed to work with it.

The way the current fixed-rate TS is setup is to model Hall D which means setting a total

desired data rate for 64 ROCS and adjusting the individual ROC’s to match. This is easily

changed by modifying the total desired data rate in the TsFixedRateSimulation

constructor and by modifying the logic in the callback() method of the InitCallback

interior class.

The very first thing that must be done is to hack the Emu.java file. Look into the

download(Command cmd) method. The lines:

module = new RocSimulation(n.getNodeName(), attributeMap, this);

module = new TsSimulation(n.getNodeName(), attributeMap, this);

must be replaced with:

module = new RocFixedRateSimulation(n.getNodeName(), attributeMap, this);

module = new TsFixedRateSimulation(n.getNodeName(), attributeMap, this);

respectively.

In addition to the cMsg communication mentioned in the previous section, there are

additional cMsg exchanges that need to take place. The tricky thing is that the fixed rate

depends on the number of ROCs and how much data each sends. So there’s a callback in

the fixed-rate TS called InitCallback which can be modified to suit one’s requirements.

This callback needs to be executed before a run takes place.

To do that, each ROC contacts the fixed-rate TS in the GO transition sending an init

message to the fixed-rate TS:

subject = “initFromRoc”, type = “<emu name>”

where the “user int” contains the number of bytes per entangled block of events including

evio headers. Once sent, the ROC waits until the TS releases a latch. All ROCs get

released at the same time and begin the normal sending of data.

Before releasing the ROCs, the TS’s callback figures out and sends in a message to all

ROCS, the desired “entangled blocks/buffer” in the “user int” and the target

“bufsPerSec” in an accompanying payload named “bufsPerSec” with:

subject = “init”, type = ROC

The ROC receives this info and passes it on to its output channels. Note that only the emu

channel is capable of fixing its output rate by adding delays when necessary. The code for

this is in the DataChannelImplEmu.DataOutputHelper.flushEvent() method.

Last, these classes are meant to be modified by the programmer seeking to simulate a

particular experimental condition.

7.8. Evio Events Per ET Buffer

This feature is largely unused since the ET system is no longer used to handle the data

transmission between the ROCs and the EBs.

Another largely hidden piece of controlling the data flow is instituted to avoid

mismatches in the number of evio events coming from each ROC to the EB. ROCs with

large amounts of data will send fewer evio events in an ET buffer than will those with

little data. What we don’t want is for ROCs with only a little data to wait until its 2MB

ET buffer is full before sending while in the meantime the EB has already received ET

events from ROCs with big events. This keeps the EB waiting when it could be building.

To facilitate faster event building, all ROCs receive feedback from either the SEB or PEB

(whichever is being used) in the form of cMsg messages, telling them the maximum

number of evio events to fit into a single ET buffer before sending. The trick is to pick

this number dynamically based on current DAQ conditions which will ensure good data

flow.

Currently it works as follows. The SEB or PEB emu connects to the platform’s cMsg

server in the cMsg domain in the namespace “M” and creates a subscription to:

 subject = <emu name>, type = “*”

The associated callback receives messages from the ET input channels containing the

number of evio events in each ET buffer or M. This callback finds the lowest and highest

M values from all reporting channels in order to send that number to the ROCs on the

other end of the input channels. It also sends the highest safe value of M (a value that will

allow the ROCs to operate without using the timeout to send data) which is calculated to

be 2 x lowest-M. This feedback message is sent to the ROCs only if the highest safe

value changes and no more than once every 2 seconds. Furthermore, once the feedback is

sent, all M values return to their initial values and are recalculated. This keeps the

feedback up to date within 2 seconds.

The ET input channels meanwhile report their current M value by publishing a cMsg

message to:

 subject = <emu name>, type = “M”

with the user int set to M. They report no more than every ½ second in order to keep from

overloading the cMsg server.

The feedback messages sent to the ROC are sent to the platform’s cMsg server in the

namespace <expid> with:

 subject = <emu name>, type = “eventsPerBuffer”

The highest safe M is sent as the user int while the low M and high M are sent as integer

payload items called “lowM” and “highM” respectively.

Chapter 8

8 Fast Ring Buffers

Strictly speaking this chapter is really a part of the previous one about developer’s

details, but the fast ring buffers which are used throughout the emu deserve their own

chapter. The folks at LMAX wrote a software package implementing fast ring buffers

called the Disruptor which we’ll be taking a close look at:

https://github.com/LMAX-Exchange/disruptor

A Jefferson Lab fork of it can be found at:

https://github.com/JeffersonLab/disruptor

For the moment, however, look at the Figure 1.1 which shows queues between input

channels and modules. A channel or module grabs an event off a queue, processes it, and

places it on another queue. In the EB, for instance, there were 3 queues that each event

spent time in. Originally, the queues used in the emu were of the type built into the Java

language, like the ArrayBlockingQueue. Using this class was convenient and easy, but

when the performance of the emu was profiled, 40% of the CPU time was taken up

putting stuff on and taking stuff off of queues – not good. What is it about queues that are

such a problem? Why are they so slow?

8.1. Locks are Bad

Let’s look at an important component of queues – locks. Locks provide a thread-safe way

to read and write common data, but are very expensive to use. When there is contention

for a lock, the operating system must arbitrate resulting in context switching and

suspended program threads waiting for the lock. While in control, the OS may decide to

do other tasks during which the original context may lose cached data and instructions.

To demonstrate these effects the programmers at LMAX called a function which

incremented a counter in a loop 500 million times under different conditions.

https://github.com/LMAX-Exchange/disruptor
https://github.com/JeffersonLab/disruptor

Method Time (ms)

One thread 300

One thread with lock 10,000

Two threads with lock 224,000

One thread with CAS 5,700

Two threads with CAS 30,000

One thread with volatile write 4,700

Once locks are used, even uncontested, performance is 30x worse. With contention, it’s

750x worse! Instead of using locks, atomic CAS or Compare-And-Swap operations can

be used if the item to be updated is a single word. It’s a much better approach since it

does not require kernel arbitration and a context switch, but the processor must still lock

its instruction pipeline to ensure atomicity and use a memory barrier to make the changes

visible to other threads. The downside is that using only CAS operations and memory

barriers to protect data beyond a simple counter is extremely difficult. Less costly in Java

is the reading or writing of a volatile field which uses read and write memory barriers

respectively.

8.2. Cache Lines

Let’s look at one more subject of importance in queue performance – cache-lines.

Hardware doesn’t move memory around in bytes or words but in cache-lines that in linux

are 64 bytes. What this means is that if two variables are in the same cache-line, and they

are written to by different threads, they result in the same problem of write contention as

if they were the same variable. This is known as “false sharing”. For minimal contention

and therefore best performance, it is necessary that independent, but concurrently written,

variables do not share the same cache-line.

8.3. The Trouble with Queues

The bounded queues originally used in the emu have write contention at the head, tail,

and size variables. If there is more than one producer (the case for EB build threads

writing to output channels), the tail pointer will be the point of contention as more than

one thread wants to write to it. If there’s more than one consumer (the case for EB build

threads reading from input channels), then the head pointer is contended since this is not

just a read but also a write as the pointer is updated when the element is consumed.

In actual use, queues are almost always full or empty since producers and consumers

never run at the same rate. This translates into high levels of contention as the head and

tail are the same pointer. And to top things off, the head, tail and size are often in the

same cache-line resulting in false sharing. Okay, there’s one more thing. In Java the

queues are a constant source of garbage. Objects are created, stored on the queue,

removed and eventually discarded – nothing is recycled. If the queue is linked-list based,

objects representing the nodes of the list need to be created and eventually reclaimed.

8.4. Disruptor Design

The LMAX disruptor is designed to address all the issues just mentioned. First off the

memory usage is much better. All memory for the ring buffer is pre-allocated on startup.

The ring is populated with an array of permanent objects or entries (therefore not garbage

collected) that can contain data of interest. Allocating memory in this way allows

traversal of the entries to be done in a very cache-friendly manner.

Since there is neither head nor tail, both consumers and producers track their own place,

or sequence, as they go around the ring. Producers claim the next slot in sequence when

claiming an entry in the ring. Since the emu only uses rings with one producer, this

sequence of the next available slot is a simple, uncontested counter. Once a sequence

value is claimed, its corresponding entry in the ring is now available to be written to by

the claiming producer. When the producer is done with the entry, it can commit the

changes by updating a separate counter which represents the cursor on the ring for the

latest entry available to consumers. This it can do by using a memory barrier which is

done by a volatile write in Java – no lock, no CAS. For better performance, the cursors

are padded in such a way that false sharing never occurs.

Consumers, on the other hand, wait for a sequence to become available by using a

volatile read of the cursor. Various strategies can be used to wait, but (probably) the

fastest and the one used in the emu is a busy spin loop check of the cursor for 30,000

loops followed by a blocking strategy that uses a lock and condition variable. Consumers

each contain their own sequence which they update as they process entries from the ring.

These sequences allow the producer to track consumers in order to prevent the ring from

wrapping, and they also allow other consumers to coordinate work on the same entry.

So we see that the disruptor ring buffers use no locks or CAS, minimize contention, and

are cache-friendly. All concurrency is achieved using memory barriers.

An added benefit from this design is that when consumers are waiting for the next

available sequence, the sequence actually read may be several entries beyond the next

one. Thus only one cursor read is necessary for the processing of several entries. This

type of batching increases throughput while reducing and smoothing latency at the same

time.

8.5. Disruptor Use in a Previous EB

As an example of ring buffer use, consider the figure below which represents the ring

buffer of one of the event builder’s input channels (as it used to be since it’s now been

changed).

Figure 8.1 EB Input Channel Ring Buffer

In this case, the producer is an input channel. It starts with entry 1 and keeps placing evio

events into the entries as data flows in and eventually ends up working on entry/event 14.

When done with event 13, it updates its cursor saying that event 13 is available for

consumers. That cursor is represented by “sequence barrier 1”.

The preprocessing thread is the first consumer. It reads the coda id of the sending coda

component from the data and sees if it matches what is expected from the configuration

(among other things). It starts consuming events as they become available and is

currently working on event 11. When done with that it will read the value of sequence

barrier 1 which is 13 and will be able to move to 12 and after that to 13 without reading

the cursor again, and it will also update its sequence seen as “sequence barrier 2” in the

figure. Just as the first barrier indicates when the producer is finished with an event, the

second does that same thing to indicate that the preprocessor is finished with its event.

All the build thread consumers are programmed to wait on the second barrier.

Each build thread takes one event from each input channel in order to build an event.

Build thread 1 take event 1, build thread 2 takes event 2, etc. etc. Thus, in this case, build

thread 1 will grab event 1, skip events 2 thru M, and go to event 1+M for its second and

so on.

In the figure, the input channel cannot produce beyond event 1 (for the second time) since

the build threads have yet to release any more.

Prior to using a single ring buffer, the input channel placed parsed evio events onto a

queue which the preprocessing thread then used as its input. The preprocessor then placed

its output on another queue which the build threads used as their input. All the build

threads would contend for the second queue’s lock in order to read it. Thus 2 queues were

replaced by only one ring buffer.

8.6. Disruptor Use in the Byte Buffer Supply

The ByteBufferSupply class (an instantiation of which is hence referred to as a supply)

and its companion the ByteBufferItem class (an instantiation of which is hence referred

to as an item) should really be in a separate library. They are 2 classes that work together

to provide a generally useful, extremely low-latency, non-garbage producing source of

reusable ByteBuffer objects.

The heart of what makes this work is a single disruptor ring containing ByteBufferItem

objects. Such an object provides a wrapper of a ByteBuffer object. The supply can be

used in 3 different modes:

1) It can be used as a simple supply of items. In this mode, only get() and release()

are called. A user does a get(), uses that item/buffer, then calls release() when

done with it. If there are multiple users of a single buffer (say 5), then call

item.setUsers(5) before it is used and the buffer is only released when all 5 users

have called release().

2) As in the first usage, it can be used as a supply of items, but each item can be

preset with a specific ByteBuffer object. Thus, it can act as a supply of buffers in

which each contains specific data. Because of the circular nature of the ring used

to implement this code, after all items have been gotten by the user for the first

time, it starts back over with the first -- going round and round.

To implement this, use the constructor which takes a list of ByteBuffer objects

with which to fill this supply. The user, instead of calling get(), calls getAsIs()

which does not clear the buffer's position and limit. When finished

reading/writing, user calls release(). It's up to the item’s user to maintain proper

values for the buffer's position and limit since it will be used again. If there are

multiple users of a single buffer (say 5), then call item.setUsers(5) before it is

used and the buffer is only released when all 5 users have called release().

3) It can be used as a supply of items in which a single producer provides data for a

single consumer which is waiting for that data. The producer does a get(), fills the

buffer with data, and finally does a publish() to let the consumer know the data is

ready. Simultaneously, a consumer does a consumerGet() to access the data once

it is ready. The consumer then calls release() when finished which allows the

producer to reuse the now unused buffer.

One general characteristic of a disruptor ring is that when a consumer of items releases an

item, say item #100, all previous 99 items are released as well for any following

consumers or the producer. In a supply, this is not desirable behavior. For example, if

thread A is currently working with item 99 and thread B was simultaneously working

with item 100 and has just released it, item 99 will unfortunately also be released,

potentially allowing another user to grab it and use it at the same time – not good.

To mitigate this, the supply is programmed to only release its items in sequence. This,

unfortunately, requires a lock. There is way around using a lock however. In one

constructor, the user can guarantee that all items will be released in sequence, and

trusting the user, a lock is not used. Be warned, however, that releasing things out-of-

order in that case will result in an exception or flaky behavior. In practice, the lock seems

to have little effect on performance.

There is another condition in which a lock is used. If a user gets an item/buffer and wants

it to be used in multiple (N) contexts/threads, the method item.setUsers(N) must be

called. This item must be released in each of the multiple contexts in order to be given

back to the supply in the final call to release(). The release of the item in each of the

multiple contexts is locked if no initial guarantee of sequential item release is made. If

such a guarantee was made in the constructor (as previously discussed), then a volatile

variable is used to handle this instead of the less-preferable lock.

This feature of the supply was implemented to program the input channels of an EMU. In

an ET or emu domain channel, there are buffers coming in either over the network or in

shared memory. Each incoming buffer is copied into a buffer taken from a supply. This

supply buffer is then parsed into multiple (N) evio events. These little evio event objects

are what are placed into the channel’s internal input ring buffer. Each of these N evio

event objects are essentially pointers back into the original supply item/buffer. In the case

of an event builder, each one of the multiple building thread grabs one of these evio

events from each channel and builds it into a final event. When done building, each evio

event is released by its build thread. When all N events are released, the buffer is released

back to the supply. In the EB, built events themselves are also stored in a supply – one

created for each build thread. Although one could create a new ByteBuffer for each built

event, it would eventually have to be garbage collected resulting in a tremendous strain

on the JVM.

The following is actual code used to create and use a supply.

// Create a supply of ByteBuffers

int ringSize = 1024; // number of buffers

int bufferSize = 256000; // bytes per buffer

ByteBufferSupply supply = new ByteBufferSupply(ringSize, bufferSize);

// Use the supply & double a single buffer size

ByteBufferItem item = supply.get();

item.ensureCapacity(2*bufferSize);

ByteBuffer buf = item.getBuffer();

// Release the buffer and allow for its reuse

supply.release(item);

Although the actual classes contain more complexity, they can be quite simple to use.

The ring contains ByteBufferItem objects each of which contain a single ByteBuffer. In

this way, the contained ByteBuffer objects can be replaced easily if more memory is

needed.

8.7. General Disruptor Use in the Emu

Ring buffers are used in several places throughout the emu:

• Each input channel has one ring

• Each output channel has one ring for each of the preceding module’s event-

processing threads

• Internal operation of the ET output channel

• The ByteBufferSupply, used to provide reusable ByteBuffers, has one ring and is

used by, for example,

o EB build threads

o Emu input channel

o ET input channel

o Simulated ROC

All input channels place their parsed evio events into 1 ring buffer. All output channels

have the same number of ring buffers as the last module has event-processing threads

(build threads in the EB). Thus, each event-processing thread has its own ring buffer in

each output channel – one producer per ring. This design eliminates multiple producers

and contested writes. One can see this clearly in figure 7.1.

8.8. Ring Buffer Example Code

The code to create a ring is:

 // Number of ring entries must be power of 2

int ringSize = 1024;

// Define factory to produce objects contained in the ring

final private class RingItemFactory implements EventFactory<RingItem> {

 final public RingItem newInstance() {

 return new RingItem();

 }

}

// Create the ring buffer using a very fast busy-spin waiting strategy

RingBuffer<RingItem> rb = createSingleProducer(new RingItemFactory(),

 ringSize, new YieldingWaitStrategy);

The code to produce data for a ring is:

while(true) {

 // Get the next available sequence or ring slot (may block)

 long sequence = rb.next();

 // Get the actual entry at that sequence

 RingItem entry = rb.get(sequence);

 // Fill entry with data …

 // Release the entry back to the ring buffer for consumers

 rb.publish(sequence);

}

A note on publishing the sequence, it not only releases its corresponding entry to all

consumers that follow, but it also releases all previous entries. For example, if a producer

does several “rb.next()” and “rb.get()” calls without publishing, publishing the last

sequence will also release all prior ones.

The code to consume data from a ring is:

// Object allowing us to wait for producer to be finished

SequenceBarrier barrier = rb.newBarrier();

// Object allowing us to tell others where we are

Sequence sequence = new Sequence(Sequencer.INITIAL_CURSOR_VALUE);

// If this is the last consumer before the producer,

// in other words, no other consumers are depending on us going first,

// then add the following line.

rb.addGatingSequence(sequence);

// Keep track of our place in the ring

long nextSequence = sequence.get() + 1;

while(true) {

 // Get the next available sequence or ring slot (may block).

 // May be > the sequence asked for (nextSequence).

 long availableSequence = barrier.waitFor(nextSequence);

 // While we have access to available entries …

 while(nextSequence <= availableSequence) {

 // Get the actual entry at the next sequence

 RingItem entry = rb.get(nextSequence);

 // Read entry data …

 // Go to the next ring entry

 nextSequence++;

 }

 // Release all used entries back to the ring

 // buffer for producer or dependent consumers

 sequence.set(availableSequence);

}

The code is rather straight forward. Although not shown here, additional barriers can be

added so that the ring understands that certain consumers depend on other consumers

going first.

Appendix A

A. CODA Types

The following is a list of CODA DAQ component types, their default run control priority

levels and their descriptions.

CODA Type Default Priority Description

TS 1210 (master ROC) Trigger Supervisor

GT 1110

ROC 1010 Readout Controller

DC 910 Data Concentrator (first level event builder)

EBER 810 Combined EB & ER, used with DCs or ROCs

PEBER 810 Combined EB and ER, used with ROCs

SEBER 810 Combined EB and ER, used with DCs

SEB 610 Secondary Event Builder

(2nd level event builder used with DCs)

PEB 510 Primary Event Builder

(one and only one event builder)

FCS 410 Farm Controller

ER 310 Event Recorder

SLC 110 Slow Control Component

USR 10 User Component

EMU 0 Event Management Unit

	1 Introduction
	1.1. Input / Output
	1.2. Modules
	1.3. Configuring
	1.4. Monitoring, and Controlling

	2 Getting, Building, and Installing the EMU
	2.1. Getting the EMU
	2.2. Compiling Java
	2.3. Building Documentation

	3 Data Input and Output
	3.1. Transports
	3.1.1. FIFOs
	3.1.2. Files
	3.1.3. cMsg messages in cMsg domain
	3.1.4. Sockets in cMsg emu domain
	3.1.5. ET

	3.2. Channels
	3.2.1. FIFOs
	3.2.2. Files
	3.2.3. cMsg – cMsg domain
	3.2.4. cMsg – emu domain
	3.2.5. ET
	3.2.6. Event Recorder – special rules

	4 Modules
	4.1. Config File
	4.2. Fast Event Builder
	4.3. Event Recording
	4.4. ROC Simulation
	4.5. Trigger Supervisor Simulation
	4.6. Farm Controller

	5 Running an EMU with Run Control
	5.1. Config File Final Form
	5.2. Creating EMUs
	5.3. Platform connection
	5.4. Running a single EMU
	5.5. Running Multiple EMUs

	6 Running an EMU with the Debug GUI
	7 Developer's Details
	7.1. cMsg Run Control Connection
	7.2. Data Flow
	7.3. ET Channels
	7.3.1. Output
	7.3.2. Input

	7.4. cMsg Channels, cMsg domain
	7.4.1. Output
	7.4.2. Input

	7.5. cMsg Channels, emu domain
	7.5.1. Output
	7.5.2. Input

	7.6. Simulated ROCs and TS
	7.6.1. Trigger Supervisor
	7.6.2. ROCs

	7.7. Simulated Fixed-Rate ROCs and TS
	7.8. Evio Events Per ET Buffer

	8 Fast Ring Buffers
	8.1. Locks are Bad
	8.2. Cache Lines
	8.3. The Trouble with Queues
	8.4. Disruptor Design
	8.5. Disruptor Use in a Previous EB
	8.6. Disruptor Use in the Byte Buffer Supply
	8.7. General Disruptor Use in the Emu
	8.8. Ring Buffer Example Code

	A. CODA Types

