

cMsg – A Publish/Subscribe Package for Real-Time

and Online Control Systems

Elliott Wolin, D.Abbott, V.Gurjyan, E.Jastrzembski, D.Lawrence. C.Timmer

 Abstract--cMsg is a messaging framework designed for

use in real-time data acquisition and online controls systems.

It provides a single application programming interface (API)

to a set of diverse underlying messaging systems. It further

implements a proxy system whereby messaging requests are

handled by a remote server instead of within the client

process. cMsg also includes a built-in full-featured public-

domain publish/subscribe messaging system, as well as

support for a number of IPC systems commonly used in

HENP. Below we first describe the publish/subscribe

messaging paradigm and discuss its use in real-time and

online systems. Next we describe the philosophy of the cMsg

framework and present some details as well as benchmarks

using the built-in publish/subscribe messaging system.

Finally, since the core of cMsg is written in pure Java, we

discuss the suitability of Java for use in real-time and online

systems.

I. INTRODUCTION1

 The CODA [1] data acquisition package at Jefferson Lab

(JLab) has been in use and under continual development for

almost a decade, and currently employs a number of mutually

incompatible interprocess communication (IPC) systems and

API’s. Recently we decided to unify all interprocess

communication under a single API, as well as decrease the

number of underlying communication packages used. This

should simplify life for developers and users, and allow us to

change or add new underlying IPC systems without having to

modify application code.

1 Manuscript received June 19, 2005; revised Sep 23, 2005.

 Author’s address: 12000 Jefferson Lab MS 6B, Newport News,

 VA, 23606, USA.

 Email: wolin@jlab.org.

 This work supported by the US Department of Energy.

 Our API and package requirements are:

• Powerful enough to support publish/subscribe IPC

• Include proxy system

• Handle moderate message rates (100’s of Hz) and sizes

(100’s of bytes)

• Handle hundreds of clients

• Work on Unix (many flavors) and vxWorks

• Provide C/C++ and Java API’s

• No commercial components if possible

• Support a number of existing messaging systems

• Must be simple to add additional messaging systems

We required compatibility with pub/sub because it is an excellent

match to our needs and because experiments at JLab already use

pub/sub IPC. The proxy system is needed because some of our

existing IPC systems do not work on all the architectures we

must support. The rates, client counts, architectures, and

languages match requirements from experiments at the planned

JLab 12 GeV upgraded accelerator. We try to avoid commercial

components since we distribute software to many groups in and

outside JLab, and including commercial components in the past

has been problematic and/or expensive. We need to support

some of our existing underlying messaging systems for

backwards compatibility, although as described below we

developed a new pub/sub IPC system as part of this effort.

Finally, we expect to need to add new underlying IPC systems in

the future.

 There are a few packages developed with similar goals.

CDEV [2] is also a thin layer on top of multiple underlying IPC

systems, but the CDEV API is not powerful enough for our

needs, among other problems. Abeans [3] acts as a layer on top

of multiple underlying physical control systems, but the Abeans

package is designed to solve a different problem than ours.

 Note that our emphasis was on robustness, simplicity, and

flexibility, and not necessarily on high performance.

mailto:wolin@jlab.org

II. WHAT IS PUBLISH/SUBSCRIBE

 The asynchronous publish/subscribe interprocess

communication paradigm is widely used in industry and has

proven to be very powerful and successful; yet the model is

deceptively simple.

 In asynchronous pub/sub messaging, producers first fill

message objects, then publish the messages to abstract subjects,

in a launch-and-forget mode. Message consumers subscribe to

the abstract subjects and provide callbacks to handle messages as

they arrive, in a subscribe-and-forget mode. Neither producer

nor consumer knows of each other’s existence. A single process

can be both a producer and consumer.

 The asynchronous nature of the paradigm matches well the

asynchronous nature of communication within real-time and

online control systems. Here processes are often multi-threaded

and perform multiple tasks. Control information arrives

sporadically and must be handled as it arrives and on a priority

basis. The same applies concerning status information, in that

such processes can only send out information when higher

priority tasks are not pending.

 Note that multiple groups of processes can communicate

without interfering with each other via simple subject naming

conventions.

 In contrast to asynchronous pub/sub communications, in

reliable peer-to-peer messaging pairs of client processes

exchange information directly, and a channel must be maintained

between all process pairs. Here the highest throughputs can be

achieved since distribution and network overhead can be

minimized. However, peer-to-peer messaging does not scale

well with the number of processes as each process must maintain

as many open channels as there are processes. In pub/sub

systems processes generally maintain a single channel to a server

that routes the messages. If multiple servers are used a variety of

server routing schemes are possible, including peer-to-peer

routing. Even if servers use peer-to-peer routing the system is

less complex than the pure peer-to-peer case because there are

usually far fewer servers than client processes.

III. WHAT IS CMSG

 The cMsg package is a framework within which one can

deploy multiple underlying IPC systems. It contains a built-in

full-featured asynchronous pub/sub system that also includes

some useful synchronous peer-to-peer capabilities.

 The cMsg package can be used at a number of levels:

1. As an abstract API one can layer on top of an underlying

messaging system

2. As a framework for dispatching to multiple underlying

messaging systems

3. As a proxy system whereby clients communicate with

remote servers that actually connect to the underlying

messaging systems

4. As a full-featured stand-alone pub/sub IPC system

Note that the first two levels are primarily of interest to

developers (see the cMsg Developer’s Guide [4] for details).

Most of this report deals with the third and fourth levels (see the

cMsg User’s Guide [5]).

 Note that the pub/sub system included with the cMsg package

is complete and full-featured, with the minor addition that cMsg

consumers can subscribe to both a message subject and type, and

the two are treated equally in terms of message routing and

delivery. Also included within the cMsg package are

mechanisms to allow communication with EPICS Channel

Access, databases, queues, various IPC packages supported by

JLab, the commercial product SmartSockets from Tipco, etc, as

well as a number of useful auxiliary programs such as message

loggers, gateways, command-line utilities, etc. Other IPC

packages are being added, including the DIM package from

CERN [6].

Messaging Spaces, Domains, and the UDL

 cMsg communications are partitioned into messaging spaces

called “domains”, and a process can connect to multiple domains.

Domains are specified via an http-inspired “Universal Domain

Locator” or UDL (see [5] for details). Generally messages

published within one domain will not be delivered within another

domain, although some domains may violate this. If needed, the

cMsgGateway can be used to implement generic cross-domain

communications.

 Domain access is implemented on the client side, and as

discussed above a number of domains are supplied in the cMsg

package by default. The proxy service mentioned earlier is

implemented via the cMsg Domain.

cMsg Domain Server and Subdomains

 The cMsg domain uses a Java server (Java version 1.5 or later)

as a proxy or broker for all interprocess communications. Clients

communicate with the server using a built-in proprietary

protocol, and the (possibly remote) server interacts with the

underlying IPC system on the client’s behalf. Thus for example,

the proxy system allows a vxWorks client to communicate with

an IPC system that does not provide a vxWorks API and library.

Byte-swapping and other system-dependent transformations are

taken care of automatically.

 The cMsg domain UDL specifies the host and port on which

the cMsg domain server is running. The server implements

dynamically pluggable subdomains whereby the code that

actually performs the messaging can be loaded at runtime (via a

subdomain specification in the UDL [5]). .

 The full pub/sub system discussed earlier is deployed within

the cMsg subdomain of the cMsg domain. However, there are

many other supplied domains and subdomains [5], and

developers can add more of each [4]. Also, not all domains and

subdomains implement the full pub/sub paradigm, and indeed a

number of them implement quite a bit less. For example, the File

domain simply logs messages to local files.

cMsg Subdomain

 The cMsg subdomain implements a full-featured asynchronous

pub/sub messaging system, with a few synchronous peer-to-peer

mechanisms added for convenience. Although commercial

pub/sub packages exist that could meet our needs, as mentioned

earlier we wanted to avoid commercial packages if possible.

Further, none of the public domain packages we knew about

included all the features we needed. Thus we decided to attempt

implementation our own package in Java. We were surprised

how quickly we were able to implement the base functionality, so

we decided to continue to develop the full system in Java, C, and

C++;

Using the cMsg Package

 Below we list some C++ code snippets demonstrating the

simplicity and ease of use of the cMsg package:

Sending a Message

 #include <cMsg.hxx>

 // connect to cMsg server

 cMsg c(UDL, myName, myDescription);

 c.connect();

 // create and fill message object
 cMsgMessage msg;

 msg.setSubject(mySubject);

 msg.setType(myType);

 msg.setText(myText);

 // send message

 c.send(msg);

Receiving a message

 // subscribe and start receiving

 c.subscribe(mySubject, myType,
 new myCallback(), NULL);

 c.start();

 // do something else…

where the callback class is:

 class myCallback:public MsgCallbackAdapter {
 void callback(cMsgMessage msg,

 void* userObject) {

 cout << "subject is: " << msg.getSubject() << endl;

 }

 };

Synchronous messaging

 cMsgMessage response = c.sendAndGet(msg,timeout);

 // exception thrown if no message arrives within timeout

Note that the snippets above will compile and run when linked

with the standard cMsg libraries, and that no IDL’s, stub

generators, etc. are needed.

Performance

 The cMsg server is written in pure Java, and although little

effort was put into optimization, performance exceeds our

requirements by two orders of magnitude with a single server and

a small number of clients. This has led us to consider uses for

cMsg beyond our original plans, e.g. for high-speed data transfer

in smaller DAQ systems.

 Below we show measurements of cMsg throughput employing

both Java and C clients on Linux and vxWorks (we have not yet

completed C++ benchmarks). In all cases the cMsg server was

running on a 2.4 GHz quad-Opteron RHEL server, and all nodes

had Gbit Ethernet interfaces connected to a Cisco Catalyst 4000

series switch.

 We identify two regimes: high message rate/small message

size, or the “control” regime, and low message rate/large

message size, the “DAQ” regime. The former is generally limited

by CPU power on the client and server nodes, the latter by

network bandwidth and resources required to service the

network. The former is best understood from Fig. 1 , the latter

from Fig 2.

 In Fig 1 we plot message rate vs. message payload size

(overhead is 86 bytes) for a number of different conditions. For

the top two curves the producer and consumer ran on the same

node as the server, so data did not move over a network. In the

control regime the server handled over 33,000 messages per

second with Java clients, and slightly less for C clients,

somewhat surprising since one might expect C client

performance to exceed Java client performance. These results

place upper limits on server and client performance in our test

setup, and are useful when interpreting later results.

 For the next two results both producer and consumer were

running on separate 2 GHz dual-Xeon RHEL machines. To our

surprise again Java clients displayed equal or better performance

than C clients over most of the range. In the control regime Java

handled over 25,000 messages per second over the network

(actually twice, once from producer to server, then again from

server to consumer).

 The bottom curve is for a vxWorks C producer running on a 1.3

GHz MVME6100 PPC 7457 processor sending messages to a C

consumer on a 2 GHz dual-Xeon RHEL machine. In the control

regime performance was about the same as for the Linux C

producer.

 Network bandwidth effects are most clearly seen in Fig 2,

where total data throughput is plotted vs. message size, and

results become interesting above about 1 kByte message size.

 In the non-network case the data transfer rate peaks at about

330 MBytes/sec, but at different payload sizes for Java and C

clients. Note that C performance unexpectedly falls off rapidly at

large payload size.

 In the network case the C rate peaks at about 110 MBytes/sec,

or at almost 90% of the full Gbit bandwidth, but then falls off

sharply above about 1 MByte payload size, similar to the non-

network case. We do not completely understand these falloffs at

large payload size, but suspect they may disappear with careful

tuning of the C code and network stack parameters.

 Java performance peaks at about 80% of the full Gbit

bandwidth over a wide range, and does not fall off. We note that

in both the C and Java cases the server machine was using an

entire CPU to service the network traffic.

 vxWorks performance is not nearly as good, not surprising

since the CPU and Ethernet hardware are not as powerful as

those in the Linux machines, and the vxWorks operating system

was not optimized for Gigabit network performance.

Future work

 We are currently implementing server-to-server

communication capabilities in the cMsg domain to allow for

load-balancing and other optimizations. We further are

implementing an auto-failover feature whereby clients will

automatically be connected to another server if their current

server dies. Currently clients only get notified when the server

dies and must reconnect to another server on their own.

 We are installing a multi-node test system that will allow us to

run far more clients than is possible on our existing system.

When the new system is complete we will be able to test cMsg

under more realistic conditions. In particular, we will measure

how performance scales as the number of clients increases to a

hundred or more, as expected in the next generation of

experiments at JLab.

 Additional underlying IPC packages will be supported as

needed. Currently we are in the process of adding support for

DIM [6].

 Finally we plan to add extensive system monitoring

capabilities to allow clients to get lists of existing servers, clients,

subjects, subscriptions, etc.

IV. ROLE OF JAVA IN REAL-TIME AND ONLINE SYSTEMS

 Although Java is playing a serious role in many modern DAQ

and online systems, it is only commonly used for the least

demanding tasks, such as control GUI’s. Many people simply do

not believe Java is up to more demanding tasks. Our experience

and results are quite to the contrary.

 We chose to develop the cMsg server and initial client API’s in

Java because of its many advanced features (especially in Java

1.5) and the vastly reduced development time, compared to C, we

had experienced in other projects. Thus we were able to very

quickly modify the Java code as our thinking developed. Once

this design/prototype phase was complete we wrote the C client

library. This stage took much longer than the previous stage, due

to the lack of high-level facilities in C (e.g. concurrent hashmaps)

and a number of other issues, even though we were simply

duplicating the Java functionality in C (note that the C++ API is

simply a wrapper around the C API). The difference was quite

striking.

 We further had expected that the C performance would exceed

Java performance, but this again was not the case. Despite

careful tuning of the C code by an experienced C network

programmer, and little tuning of the Java code, the Java code out-

performed the C code in the majority of our tests. And the fact

that the Java code runs at 80% of the Gbit bandwidth

demonstrates that there is little left to be gained2.

V. SUMMARY AND CONCLUSIONS

 The cMsg system is simple, powerful, and flexible open-

source framework within which one can deploy multiple

underlying IPC systems. It includes a built-in full-featured

asynchronous publish/subscribe component, support for a

number of commonly used IPC systems, as well as a number of

useful utilities. It supports C/C++ and Java clients, and runs on

Unix and vxWorks.

 cMsg performance approaches network bandwidth limits, and

generally is only limited by the networking ability of the server

machine. Indeed it exceeds our requirements by two orders of

magnitude.

 The use of Java in cMsg greatly reduced our development time

compared to C, and Java performance has proven to be excellent,

generally exceeding C performance (although this may change

with further tuning of the C components). Our results clearly

demonstrate that Java is a serious contender for almost any DAQ

or online requirement.

2 Java performance depends critically on specifying the correct flags to the Java

Virtual Machine (JVM). Including the “-server” flag is very important for both

client and server. Be sure that the client JVM has plenty of memory via the

“-Xms” and “-Xmx” flags. The server garbage collection scheme is also

important, and the “-XX:+AggressiveHeap” and “-XX:+UseParrallelGC” flags
proved useful.

REFERENCES

[1] G.Heyes et al, “The CEBAF On-line Data Acquisition System”,

 Proceedings of the CHEP Conference, April 1994.

[2] CDEV is used by the EPICS community, and can be found at
 http://www.jlab.org/cdev.

[3] COSYLAB, “Abeans: Application Development Framework for Java”,

 Presented at the ICALEPC conference, Gyeongju, Korea, 2003.

[4] E.Wolin et. al, “cMsg Developer’s Guide”, ftp://ftp.jlab.org/pub/coda/cMsg

[5] E.Wolin et. al, “cMsg User’s Guide”, ftp://ftp.jlab.org/pub/coda/cMsg
[6] C.Gaspar et al, “DIM, a Portable, Light Weight Package for Information

 Publishing, Data Transfer and Inter-process Communication”, Proceedings of

 the CHEP Conference, Padova, Italy, 2000.

http://www.jlab.org/cdev
ftp://ftp.jlab.org/pub/coda/cMsg
ftp://ftp.jlab.org/pub/coda/cMsg

Fig. 1 cMsg message rate versus message payload size.

Overhead is 86 bytes.

Fig 2. cMsg data transfer rate versus message payload size.

Overhead is 86 bytes.

