
1

Using the FADC250 V3 Module (V6 – 9/14/24)

1.1 Controlling the Module

 Communication with the module is by standard VME bus protocols. All registers
and memory locations are defined to be 4-byte entities. The VME slave module has three
distinct address ranges.

A24 – The base address of this range is set by a 12-element DIP switch on the board. It
occupies 4 Kbytes of VME address space, organized in 1 K 32-bit words. Relative to the
base address, this space is divided as follows:

 000-0FF – Register space to control and monitor the module (64 long words)

 100-1FF – ADC processing registers (64 long words)

 200-2FF – HITSUM processing registers (64 long words)

 300-3FF – SCALER registers (64 long words)

 400-4FF – SYSTEM TEST registers (64 long words)

 500-5FF – AUXILIARY registers (64 long words)

 600-FFF – Reserved (640 long words)

In addition to registers that are directly mapped to a VME address (Primary Address), the
module supports Secondary Addressing in the A24 address space. These registers are
accessed through an address mapping register (Secondary Address Register). Each
secondary address is associated with a primary address. A Primary Address may have up
to 64 K secondary addresses associated with it. A VME cycle loads the mapping register
with data which is the internal (secondary) address of the target register. A VME cycle
with the associated primary address accesses (read/write) the chosen internal register.
Important registers are assigned primary addresses, allowing them to be directly
accessible in a single VME cycle. Setup tables are assigned secondary addresses. This
allows for a large internal address space, while maintaining a small VME footprint.

A32 - The base address of this range is programmed into register ADR32. It occupies 8
Mbytes of VME address space, organized in 2 M 32-bit words. A read of any address in
this range will yield the next FADC data word from the module. Even though the module
is logically a FIFO, the expanded address range allows the VME master to increment the
address during block transfers. This address range can participate in single cycle, 32-bit
block, and 64-bit block reads. The only valid write to this address range is the data value
0x80000000 which re-enables the module to generate interrupts (after one has occurred).
The address range must be enabled by setting ADR32[0] = 1.

2

A32 - The lower and upper limits of this address range are programmed into register
ADR_MB. This common address range for a set of FADC modules in the crate is used to
implement the Multiblock protocol. By means of token passing FADC data may be read
out from multiple FADC modules using a single logical block read. The board possessing
the token will respond to a read cycle in this address range with the next FADC data word
from that module. The token is passed along a private daisy chain line to the next module
when it has transferred all data from a programmed number of events (register BLOCK
SIZE). The address range must be enabled: set ADR_MB[0] = 1.

1.3 Module Registers

VERSION – board/firmware revision (0x0)

 [7…0] – (R) – firmware revision

 [15…8] – (R) – board revision

 [31…16] – (R) – board type (“FADC”)

CSR – Control/Status (0x4)

 0 – (R) – Event Accepted

 1 – (R) – Block of Events Accepted

 2 – (R) – Block of Events ready for readout

 3 – (R) – BERR Status (1 = BERR asserted)

 4 – (R) – Token Status (1 = module has token)

 5 – (R) – Compression Algorithm ERROR

 [6…9] – (reserved)

 10 – (R) – DAC serialization status (1 = active)

 11 – (R) – Data FIFO Empty Flag Asserted

 12 – (R) – Data FIFO Almost Empty Flag Asserted

 13 – (R) – Data FIFO Half Full Flag Asserted

 14 – (R) – Data FIFO Almost Full Flag Asserted

3

 15 – (R) – Data FIFO Full Flag Asserted

 16 – (R) – ADC Processing FPGA high temperature alarm flag

 17 – (R) – CTRL FPGA high temperature alarm flag

[18…19] – (reserved)

 20 – (W) – Pulse Soft Trigger 2 (if CTRL[7] = 1 and CTRL[6..4] = 5)
 (delayed Trigger 1 follows; delay in TRIG21_DELAY register)
 (R) – Trigger 2 -> Trigger 1 sequence active

 21 – (W) – Pulse Clear Module – soft reset + clear data pipelines
 (R) – Clear Module process active

22 – (W) – ENABLE SCALERS INTO DATA STREAM with FORCED
 BLOCK TRAILER INSERTION (write ‘1’ to bits 22, 23)

 23 – (W) – FORCE BLOCK TRAILER INSERTION – will be successful only

 if there are NO triggers waiting to be processed

 24 – (R) – Last FORCE BLOCK TRAILER INSERTION Successful

 25 – (R) – Last FORCE BLOCK TRAILER INSERTION Failed

 26 – (R) – Local Bus Time Out – target AK or DK timed out (5 us);

 27 – (R/W) – Local Bus Error – target protocol violation;
 (write ‘1’ clears latched bits 26, 27)

 28 – (W) – Pulse Soft Sync Reset (if CTRL[11] = 1 and CTRL[10..8] = 6)

 29 – (W) – Pulse Soft Trigger 1 (if CTRL[7] = 1 and CTRL[6..4] = 6)

 30 – (W) – Pulse Soft Reset – initialize counters, state machines, memory

 31 – (W) – Pulse Hard Reset – initialize module to power-up state

CTRL1 – Control 1 (0x8)

 [1…0] – (R/W) – Sampling Clock Source Select

0 = Internal Clock
1 = Front Panel connector
2 = P0 connector (VXS)
3 = P0 connector (VXS)

 2 – (not used)

4

 3 – (R/W) – Enable Internal Clock

[6…4] – (R/W) – Trigger Source Select
0 = Front Panel Connector (Trigger 1)
1 = Front Panel Connector (Trigger 1; synchronized)
2 = P0 Connector (VXS) (Trigger1, Trigger 2)
3 = P0 Connector (VXS) (Trigger1, Trigger 2; synchronized)
4 – (not used)
5 – Software Generated (Trigger 2 + delayed Trigger 1)
6 = Software Generated (Trigger 1)
7 = Module Internal Logic

7 – (R/W) – Enable Soft Trigger

 [10…8] – (R/W) – Sync Reset Source Select

0 = Front Panel Connector
1 = Front Panel Connector (synchronized)
2 = P0 Connector (VXS)
3 = P0 Connector (VXS) (synchronized)
4 – (not used)
5 – (not used)
6 = Software Generated
7 = no source

11 – (R/W) – Enable Soft Sync Reset

12 – (R/W) – Select Live Internal Trigger to Output (otherwise, Module Trigger).

13 – (R/W) – Enable Front Panel Trigger Output

14 – (R/W) – Enable P0 (VXS) Trigger Output

15 – (R/W) – Insert ADC parameter word into data stream. The data word appears
as a block header continuation word and has the following format:

[31…29] – 0
[28…18] – PL (see ADC processing FPGA address map below)
[17…9] – NSB
[8…0] – NSA

16 – (R/W) – Suppress both trigger time words from data stream

17 – (R/W) – Suppress trigger time word 2 from data stream
 (most significant bytes)

 18 – (R/W) – Enable Event Level Interrupt

5

 19 – (reserved)

 20 – (R/W) – Enable BERR response

 21 – (R/W) – Enable Multiblock protocol

 22 – (R/W) – FIRST board in Multiblock system

 23 – (R/W) – LAST board in Multiblock system

 24 – (reserved)

 25 – (R/W) – Enable Debug Mode

 [27…26] – (R/W) – Readout Data Format (see Appendix 1)

0 = Standard format (default)
1 = Intermediate compression format
2 = Full compression format
3 = Full compression format

 28 – (R/W) – Multiblock Token passed on P0

 29 – (R/W) – Multiblock Token passed on P2

 30 – (reserved)

31 – (R/W) – System Test Mode (0 = normal, 1 = test mode enabled)

CTRL2 – Control 2 (0xC)

 0 – (R/W) – GO (allow data transfer from external FIFOs to input FIFOs)

 1 – (R/W) – Enable Trigger (1 & 2) to Module (source = CTRL1[6…4])

 2 – (R/W) – Enable Sync Reset to Module (source = CTRL1[10…8])

 3 – (R/W) – Enable Internal Trigger Logic

 4 – (R/W) – Enable Streaming mode (NO event build)

5 – (R/W) – Use pulse derived from leading edge of Sync Reset signal as module
 Sync Reset

 [7…6] – Hall B data compression mode
 0 = NO compression
 1 = Verify (raw + compressed)
 2 = Compression ON

6

8 – (R/W) – Enable Test Event Generation (for debug)

9 – (R/W) – HALL B user (for data compression)

10 – (R/W) – data output mode select
 0 = VME (default)
 1 = VXS

[14…11] – VXS data output control bits

15 – (reserved)

 Bits 16 – 31 are functional only in Debug Mode (CTRL1[25] = 1)

 16 – (reserved)

 17 – (R/W) – Transfer data: build FIFO → output FIFO

 [18…31] – (reserved)

BLOCK SIZE (0x10)

[15…0] – (R/W) – number of events in a BLOCK.
 Stored Event Count ≥ BLOCK SIZE → CSR[3] = 1.

 [31…16] – (reserved)

INTERRUPT (0x14)

 [7…0] – (R/W) – Interrupt ID (vector)

 [10…8] – (R/W) – Interrupt Level [2..0]. Valid values = 1,..,7.

 11 - 15 – (reserved)

 [20…16] – (R) – Geographic Address (slot number) in VME64x chassis.

 21 – 22 – (reserved)

 23 – (R) – Parity Error in Geographic Address.

 24 – 31 – (reserved)

7

ADR32 – Address for data access (0x18)

 0 – (R/W) – Enable 32-bit address decoding

 1 – 6 – (reserved – read as 0)

 [15…7] – (R/W) – Base Address for 32-bit addressing mode (8 Mbyte total)

ADR_MB – Multiblock Address for data access (0x1C)

 0 – (R/W) – Enable Multiblock address decoding

 1 – 6 – (reserved – read as 0)

 [15…7] – (R/W) – Lower Limit address (ADR_MIN) for Multiblock access

 16 – 22 – (reserved – read as 0)

 [31…23] – (R/W) – Upper Limit address (ADR_MAX) for Multiblock access

The board that has the TOKEN will respond with data when the VME address
satisfies the following condition:

 ADR_MIN ≤ Address < ADR_MAX.

SEC_ADR – Secondary Address (0x20)

 [15…0] – (R/W) – Secondary Address for 24-bit addressing mode

16 – (R/W) – Enable auto-increment mode (secondary address increments by 1 after
each access of the associated primary address)

DELAY – Trigger/Sync_Reset Delay (0x24) (NOT USED)

 [21…16] – (R/W) – Sync reset delay

 [5…0] – (R/W) – Trigger delay

INTERNAL TRIGGER CONTROL (0x28)

 [23…16] – (R/W) – trigger width (4 ns per count; max = 1024 ns)

 [11…0] – (R/W) – trigger hold off delay (4 ns per count; max = 16,384 ns)

8

RESET CONTROL (0x2C)

 0 – (W) – Hard reset – Control FPGA

 1 – (W) – Hard reset – ADC processing FPGA

[2…3] – (reserved)

 4 – (W) – Soft reset – Control FPGA

 5 – (W) – Soft reset – ADC processing FPGA

[6…7] – (reserved)

 8 – (W) – Reset – ADC data FIFO

 [9…10] – (reserved)

 10 – (W) – Reset – HITSUM FIFO

 11 – (W) – Reset – DAC (all channels)

 12 – (W) – Reset – EXTERNAL RAM Read & Write Address Pointers

 [13…15] – (reserved)

 16 – (W) – Take Token – return token to 1st board of multiboard set

 [17…31] – (reserved)

TRIGGER COUNT (0x30)

 [31…0] – (R) – total trigger count

 31 – (W) – reset count

EVENT COUNT (0x34)

 [23…0] – (R) – number of events on board (non-zero → CSR[0] = 1).

 [31…24] – (reserved)

BLOCK COUNT – (0x38)

9

 [31…20] – reserved

 [19…0] – (R) - number of event BLOCKS on board (non-zero → CSR[2] = 1).

BLOCK FIFO COUNT – (0x3C)

 [31…6] – reserved

 [5…0] – (R) - number of entries in BLOCK WORD COUNT FIFO

BLOCK WORD COUNT FIFO – (64 deep FIFO) (0x40)

 [31…25] – reserved (read as ‘0’)

 24 – (R) – count not valid (word count FIFO empty)

 [23…20] – reserved (read as ‘0’)

 [19…0] – (R) - number of words in next event BLOCK

INTERNAL TRIGGER COUNT (0x44)

 [31…0] – (R) – internal live trigger count

 31 – (W) – reset count

EXTERNAL RAM WORD COUNT (0x48)

 [31…22] – reserved (read as ‘0’)

 21 – (R) – RAM empty

 20 – (R) – RAM full (1,048,576 eight byte words)

 [19…0] – (R) – data word count (eight byte words)

DATA FLOW STATUS (0x4C) (for debug)

DAC CSR (Control/Status) (0x50)

 31 – (W) – DAC initialize

10

 30 – (R) – DAC initialization complete

 29 – (W) – Clear latched status bits for DAC (bits 18-19)

 [28...20] – (reserved – read as 0)

 19 – (R) – DAC timeout on access since last status Clear (bit 29)

 18 – (R) – DAC not ready on access since last status Clear (bit 29)

 17 – (R) – Last DAC access successful

 16 – (R) – DAC ready – current state

 [15…4] – (reserved – read as 0)

 [3...0] – (R/W) – DAC channel (0-15) to access with DAC DATA register

DAC DATA (0x54)

 [31…22] – (reserved – read as 0)

 21 – (R) – register A,B select (valid for DAC read only)

 20 – (R) – 1 (valid for DAC read only)

 19 – (R) – 0 (valid for DAC read only)

 18 – (R) – 0 (valid for DAC read only)

 [17…14] – (R) – channel accessed (valid for DAC read only)

 [13…12] – (R) – DAC register select [REG1,REG0] (valid for DAC read only)

 [11...0] – (R/W) – DAC data to write or read (channel selected in DAC CSR)

[To write or read DAC:
 1 – Set channel to access by writing DAC_CSR register
 2 – DAC write: write 12-bit value to DAC_DATA register
 3 – DAC read: read 12-bit value from DAC_DATA register]

CONFIG ROM CONTROL 0 (0x58)

 [7…0] – (R/W) – Configuration CMD
 8 – (R/W) – Configuration HostEndOfCmd

11

9 – (R/W) – Configuration Host_Exec
 10 – (R/W) – Configuration ThreBytesAdr
 11– (R/W) – Reboot FPGA from Config ROM. Write 1 to Reboot.

 [12-31] – reserved

See VME_Program_FADCV3_Config_ROM.docx and
FADC250V3_Firmware_ver_4100_Description_Instructions.docx located at
M:\FE\fADC-250V3\document

CONFIG ROM CONTROL 1 (0x5C)

 [31…0] – (R/W) – Configuration Rom_Address

CONFIG ROM CONTROL 2 (0x60)

 [31…0] – (R/W) – Configuration DataToROM

CONFIG ROM STATUS 0 (0x64)

 [31…0] – (R) – Configuration DataReadFromROM

CONFIG ROM STATUS 1 (0x68)

 0 – (R) – Configuration NotValidOpCode

 1 – (R) – Configuration ReadyForCmd

 [2…31] – reserved

RESERVED (0x6C)

STATUS 1 – Input Buffer Status (0x70)

 31 – (R) – data buffer ready for input

 30 – (R) – data buffer input paused

 29 – (R) – reserved (read as ‘0’)

12

 28 – (R) – data buffer empty

 27 – (R) – data buffer full

 [26…16] – (R) – data buffer word count

[15…11] – (reserved)

[10…2] – latched compression buffer full flags (should always be ZERO)

1 – (R) – compression buffer full

0 – (R) – compression buffer empty

STATUS 2 – Build Buffer Status (0x74)

 [31…29] – reserved (read as ‘0’)

 28 – (R) – data buffer ‘A’ empty

 27 – (R) – data buffer ‘A’ full

 [26…16] – (R) – data buffer ‘A’ word count

 [15…13] – reserved (read as ‘0’)

 12 – (R) – data buffer ‘B’ empty
 11 – (R) – data buffer ‘B’ full

 [10…0] – (R) – data buffer ‘B’ word count

STATUS 3 – Output Buffer Status (0x78)

 [31…30] – reserved (read as ‘0’)

 29 – (R) – data buffer ‘A’ empty

 28 – (R) – data buffer ‘A’ full

 [27…16] – (R) – data buffer ‘A’ word count

 [15…14] – reserved (read as ‘0’)

 13 – (R) – data buffer ‘B’ empty

 12 – (R) – data buffer ‘B’ full

13

 [11…0] – (R) – data buffer ‘B’ word count

STATUS 4 – (spare) (0x7C)

 [31…0] – reserved

AUXILIARY 1 – (spare) (0x80)

 [31…0] – reserved

TRIGGER CONTROL (0x84) – Under normal conditions, a trigger received by the module
is counted and sent to the ADC Processing FPGA. A trigger is considered acknowledged
when data associated with it has been transferred to the Control FPGA. To ensure that data
buffers in the ADC Processing FPGA are not overrun, the number of unacknowledged
triggers is continuously compared to levels (MAX1, MAX2) set by the user. These levels
are based on the parameters (processing mode, # samples in window) loaded into the ADC
Processing FPGA. Two module based methods to avert buffer overflow and the resulting
data corruption are available to the user.
In the first method, module BUSY is asserted when the number of unacknowledged
triggers ≥ MAX1. BUSY propagates back to the Trigger Supervisor. The Trigger
Supervisor does not deliver triggers to the system while BUSY is asserted. Level MAX1
is based on the BUSY propagation delay, ADC Processing parameters, and the minimum
trigger interval parameter of the Trigger Supervisor.
In the second method, triggers received by the module are not sent to the ADC Processing
FPGA when the number of unacknowledged triggers ≥ MAX2. Level MAX2 is based on
the ADC Processing parameters. Not sending triggers to the FPGA Processing FPGA can
cause a loss of synchronization among system components, but will prevent data corruption
within the module. (See Auxiliary Scaler 2 for a count of lost triggers.)
Both methods can be applied together, with MAX2 ≥ MAX1.

31 – (R/W) – enable trigger stop when number of unacknowledged triggers ≥
MAX2

 [23...16] – (R/W) – level MAX2

15 – (R/W) – enable module busy assertion when number of unacknowledged
triggers ≥ MAX1

 [7...0] – (R/W) – level MAX1

TRIG21 DELAY (0x88)

14

 [31…12] – reserved

 [11…0] – (R/W) – Delay from soft TRIG2 to generated TRIG1 (4 ns/count)

RAM Address Register (0x8C) – The RAM is organized as two 36-bit words with a
common address. Auxiliary VME access (R/W) to the RAM is provided through a pair of
32 bit data registers (RAM 1, RAM 2). Note that bits 35 – 32 of each RAM word are not
accessible through VME. During data flow operations, these bits carry event marker tags
(header, trailer).

 31 – increment address after access (R/W) of RAM 1 Data Register

 30 – increment address after access (R/W) of RAM 2 Data Register

 [29…21] – reserved (read as 0)

[19…0] – RAM address

RAM 1 Data Register (0x90)
 [31…0] – RAM data word bits 67 – 36 (32 bits)

RAM 2 Data Register (0x94)
 [31…0] – RAM data word bits 31 – 0 (32 bits)

(PROM Registers 1 and 2 are used for FPGA configuration over VME.)

PROM Register 1 (0x98)

31 – READY – (R) – configuration state machine is available to accept command
 (i.e. no configuration process is currently executing).

 [30…8] – reserved (read as 0)

 [7…0] – configuration OPCODE

PROM Register 2 (0x9C)

 [31…0] – PROM ID – (R) response to specific OPCODE write to PROM reg 1.

BERR Module Count (0xA0)

15

 [31…0] – BERR count (driven by module to terminate data transmission)

BERR Total Count (0xA4)

 [31…0] – BERR count (as detected on bus)

Auxiliary Scaler 1 (0xA8)

 [31…0] – Total word count from ADC Processing FPGA

Auxiliary Scaler 2 (0xAC)

[31…0] – Count of triggers lost because number of unacknowledged triggers ≥
MAX2. (See TRIGGER CONTROL register.)

Auxiliary Scaler 3 (0xB0)

 [31…0] – Event header word count from ADC Processing FPGA

TRIGGER 2 SCALER (0xB4)

 [31…0] – (R) – Trigger 2 count

 31 – (W) – write ‘1’ to reset count

Auxiliary Scaler 5 (0xB8)

 [31…0] – Event trailer word count from ADC Processing FPGA

SYNC RESET SCALER (0xBC)

 [31…0] – (R) – Sync Reset count

 31 – (W) – write ‘1’ to reset count

Module Busy Level (0xC0)

 [31] – Force module busy

16

 [30…20] – reserved

 [19…0] – Busy Level (eight-byte words)

 (External RAM word count > Busy Level → module busy = 1)

NOTE: At the system level, an asserted module busy signal should be used to
prevent further triggers from being sent to the modules. By setting the Busy Level
well below the memory capacity (1,048,576 eight-byte words), triggers already in
the distribution pipeline can still be accepted by the module.
To prevent data corruption in the module if this global trigger control is NOT in
place, the module itself will BLOCK input triggers when the number of 8-byte
words in memory is within 12K (1.2%) of memory capacity (i.e. 1,036,288).
When global trigger control IS in place, it is important to set Busy Level
significantly LESS than 1,036,288 so that local trigger blocking will NEVER occur.
(Local trigger blocking will result in a loss of system synchronization.) The safe
maximum Busy Level depends on data size per trigger (i.e. mode of ADC
processing), but a Busy Level equal to ~87.5% of memory capacity (i.e. 917,504 =
0xE0000) should be adequate for all circumstances.

Generate Event Header Word (0xC4) (for debug)

 [31…0] – (W) – Event Header Word

Generate Event Data Word (0xC8) (for debug)

 [31...0] – (W) – Event Data Word

Generate Event Trailer Word (0xCC) (for debug)

 [31...0] – (W) – Event Trailer Word

MGT STATUS (0xD0)

 0 – (R) – lane 1 up (GTX1)

 1 – (R) – lane 2 up (GTX1)

 2 – (R) – channel up (GTX1)

 3 – (R) – hard error (GTX1)

 4 – (R) – soft error (GTX1)

 5 – (R) – lane 1 up (GTX2)

17

 6 – (R) – lane 2 up (GTX2)

 7 – (R) – channel up (GTX2)

 8 – (R) – hard error (GTX2)

 9 – (R) – soft error (GTX2)

 10 – (R) – SUM DATA VALID

 11 – (R) – MGT RESET ASSERTED

[31...12] – (R) - Reserved

MGT CONTROL (0xD4)

0 – RELEASE MGT RESET (0 = reset MGT, 1 = release reset)

1 – Data Type to CTP (0 = counting sequence, 1 = front-end data)

2 – Enable Data Alignment on Sync Reset occurrence
 [31...3] – Reserved

RESERVED (2 registers) (0xD8 – 0xDC)

SCALER CONTROL (0xE0) – See SCALERS (0x300 – 0x340)

 0 – (R/W) – Enable all scalers to count (1 = enable, 0 = disable)

1 – (W) – Latch all scalers. Write ‘1’ to simultaneously transfer all 17 scaler
 counts to registers for readout.

2 – (W) – Reset all scalers. Write ‘1’ to simultaneously reset all 17 scaler
 counts to zero.

[3 – 31] – (reserved)

BOARD SERIAL NUMBER 0 (0xE4)

 [31…24] – (R) – board serial number byte 0

 [23…16] – (R) – board serial number byte 1

18

 [15…8] – (R) – board serial number byte 2

 [7…0] – (R) – board serial number byte 3

BOARD SERIAL NUMBER 1 (0xE8)

 [31…24] – (R) – board serial number byte 4

 [23…16] – (R) – board serial number byte 5

 [15…8] – (R) – board serial number byte 6

 [7…0] – (R) – board serial number byte 7

BOARD SERIAL NUMBER 2 (0xEC)

 [31…24] – (R) – board serial number byte 8

 [23…16] – (R) – board serial number byte 9

 [15…8] – (R) – board serial number byte 10

 [7…0] – (R) – board serial number byte 11

SCALER INSERTION INTERVAL (0xF0) - Data from the SCALERS defined below
(0x300 – 0x340) may be inserted into the readout data stream at regular event count
intervals. The interval is specified in multiples of the event BLOCK SIZE. When the
interval is ZERO (the default condition), there is NO insertion of scaler data into the data
stream. When programmed for a non-zero interval, the current scaler values are appended
to the last event of the appropriate BLOCK of events. The current Trigger 1 count is also
inserted as the 18th scaler. Note that the scalers are NOT reset after their values are
captured.

Example: Interval = 10 means that every 10th block of events will have the integrated scaler
data appended to it.

(See the document FADC V2 Data Format for information on identifying scaler data words
in an event.)

The scalers may ALSO be inserted into the data stream when a FORCE BLOCK TRAILER
is done by the user. A simultaneous write of ‘1’ to bit 22 and bit 23 of the CSR (0x4)
accomplishes this. The scaler values are those at the time of the last trigger’s occurrence.

19

[15…0] - (R/W) – N (in BLOCKS of events); every Nth block of events has
integrated scaler data appended to the last event in the block.

 [31…16] – (reserved)

SUM THRESHOLD (History buffer) (0xF4)

 31 – (R) – sum data READY for readout if value = ‘1’

 [30…16] – (R/W) – reserved (read as ‘0’)

 [15…0] – (R/W) – sum threshold value for data capture

SUM DATA (History buffer) (0xF8)

 31 – (W) – writing a ‘1’ARMs History buffer for data capture

 [30…16] – (R) – reserved (read as ‘0’)

 [15…0] – (R) – sum data sample

SYSTEM MONITOR (0xFC)

 [31…22] – (R) – FPGA auxiliary voltage (2.5V) (common)
 vaux = (((float)((reg_value >> 22) & 0x3FF))/1024.0) * 3.0;

 21 – (R) – reserved (read as ‘0’)

 [20…11] – (R) – FPGA core voltage (1.0V) (common)
 vint = (((float)((reg_value >> 11) & 0x3FF))/1024.0) * 3.0;

 10 – (R) – reserved (read as ‘0’)

 [9…0] – (R) – CTRL_FPGA temperature (oC)
 temp_ctrl = (((float)(reg_value & 0x3FF)) * 503.975/1024.0) - 273.15;

20

--

SCALER Registers (0x300 – 0x340) (R)

 SCALER[0] – (0x300) - input channel 0 count

 SCALER[1] – (0x304) - input channel 1 count

 SCALER[2] – (0x308) - input channel 2 count

 SCALER[3] – (0x30C) - input channel 3 count

 SCALER[4] – (0x310) - input channel 4 count

 SCALER[5] – (0x314) - input channel 5 count

 SCALER[6] – (0x318) - input channel 6 count

 SCALER[7] – (0x31C) - input channel 7 count

 SCALER[8] – (0x320) - input channel 8 count

 SCALER[9] – (0x324) - input channel 9 count

 SCALER[10] – (0x328) - input channel 10 count

 SCALER[11] – (0x32C) - input channel 11 count

 SCALER[12] – (0x330) - input channel 12 count

 SCALER[13] – (0x334) - input channel 13 count

 SCALER[14] – (0x338) - input channel 14 count

 SCALER[15] – (0x33C) - input channel 15 count

 TIME COUNT – (0x340) - timer (each count represents 2048 ns)

--

21

--

SYSTEM TEST Registers (0x400 – 0x410)

TEST BIT REGISTER (0x400)

 0 – (R/W) – trigger_out_p0 (1 = asserted, 0 = not asserted)

 1 – (R/W) – busy_out_p0 (1 = asserted, 0 = not asserted)

 2 – (R/W) – sdlink_out_p0 (1 = asserted, 0 = not asserted)

 3 – (R/W) – token_out_p0 (1 = asserted, 0 = not asserted)

 [4 – 7] – (R/W) – spare out test bits

 8 – (R) – status_b_in_p0 state (1 = asserted, 0 = not asserted)

 9 – (R) – token_in_p0 state (1 = asserted, 0 = not asserted)

[10 - 14] – (R) – reserved (read as ‘0’)

15 – (R) – clock_250 counter status (1 = counting, 0 = not counting)

[16 - 31] – (R) – reserved (read as ‘0’)

CLOCK_250 COUNT REGISTER (0x404)

 0 – (W) – Write ‘0’ resets the counter. Write ‘1’ initiates 20us counting interval.

[31 - 0] – (R) – CLK_250 counter value. (Should be 5000 after count interval.)

SYNC_IN_P0 COUNT REGISTER (0x408)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – SYNC_IN_P0 counter value.

TRIG1_IN_P0 COUNT REGISTER (0x40C)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – TRIG1_IN_P0 counter value.

22

TRIG2_IN_P0 COUNT REGISTER (0x410)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – TRIG2_IN_P0 counter value.

--

23

--

AUXILIARY Registers (0x500 – 0x5FF)

DEBUG (0x500 – 0x518) – for VME transfers

Three registers enable the tracking of the state machine used for 2eSST VME data
transmission from the module. State values are saved in a FIFO buffer when recording is
enabled and a change in the state value occurs. While enabled the buffer is continuously
updated so that the last ‘N’ state values are present in the buffer; ‘N’ is programed by the
user. Recording must be disabled before user readout of the state value buffer (FIFO) can
begin. The actual number of valid saved state values is available to the user.

STATE LEVEL (0x500) (AUX 0)

 [31…16] – (R) – reserved (read as ‘0’)

 [15…9] – (R/W) – reserved

[8…0] – (R/W) – number of state values to capture (up to 511). Default value is
 500 (loaded on power up or hard reset of module).

STATE CSR (0x504) (AUX 1)

 31 – (R/W) – ‘1’ - buffer armed for state value capture; ‘0’ – buffer not armed

 [30…28] – (R) – reserved (read as ‘0’)

 [27] – (R) – state buffer full

 [26] – (R) – state buffer empty

 [25…9] – (R) – reserved (read as ‘0’)

 [8…0] – (R) – number of valid state values stored in buffer

STATE VALUE (0x508) (AUX 2)

 [31…17] – (R) – reserved (read as ‘0’)

 [16…0] – (R) – next 2eSST state value

SPARE DEBUG REGISTER 1 (0x50C) (AUX 3)

24

 [31…17] – (R/W) – reserved

BERR DRIVEN COUNT (0x510) (AUX 4)

 [31…0] – (R) – count of BERR driven by the module

RETRY DRIVEN COUNT (0x514) (AUX 5)

 [31…0] – (R) – count of RETRY driven by the module

SPARE DEBUG REGISTER 2 (0x518) (AUX 6)

 [31…17] – (R/W) – reserved

--

VXS OUTPUT STATUS REGISTER (0x51C) (AUX 7)

 [31…0] – (R) – status of VXS data output

--

SPARSIFY CONTROL REGISTER (0x520) (AUX 8)

0 – (R/W) – Bypass sparsification (1 = no sparsification (default on hard reset))

 [3 – 1] – (R/W) – sparsification mode (000 on hard reset)

 [31…4] – (R/W) – reserved

SPARSIFY STATUS REGISTER (0x524) (AUX 9)

0 – (R) – wait channel mask

1 – (R) – sparsification active

 [30 – 2] – (R) – reserved (read as 0)

31 – (W) – clear sparsification status (pulse)
FIRST TRIGGER NUMBER MISMATCH REGISTER (0x528) (AUX 10)

 [31…0] – (R) – trigger number at mismatch

25

MISMATCH TRIGGER NUMBER COUNTER (0x52C) (AUX 11)

 [31…0] – (R) – mismatched trigger count

NUMBER OF TRIGGERS PROCESSED COUNTER (0x530) (AUX 12)

 [31…0] – (R) – processed trigger count

SPARE DEBUG REGISTER 3 (0x534) (AUX 13)

 [31…17] – (R/W) – reserved

SPARE DEBUG REGISTER 4 (0x538) (AUX 14)

 [31…17] – (R/W) – reserved

SPARE DEBUG REGISTER 5 (0x53C) (AUX 15)

 [31…17] – (R/W) – reserved

IDELAY CONTROL 1 (0x540) (AUX 16)

 [31…0] – (R/W) – idelay1
 [8…0] – (R/W) – Idelay Count Value to be loaded into Idelay array
 [12…9] – (R/W) – Select ADC channel to load Idelay Count Value

[15..13] – (R/W) – Select ADC channel Idelay Count Value to be at
idelay_status1[28..11]

[16] – (R/W) – Rising edge load all values in Idelay array into Idelay
[17] – (R/W) – 1 allows changing Idelay Count Value.) enable VTC
[18] -- (R/W) – Rising edge reset IDELAY Control.

*** See Appendix C for description of bit 16

IDELAY CONTROL 2 (0x544) (AUX 17)

 [31…0] – (R/W) – idelay2
 [3…0] – (R/W) – Select ADC Channel Idelay Value in pico Second stored in ROM
to be at idelay_status1[10..0]

IDELAY STATUS 1 (0x548) (AUX 18)

 [31…0] – (R) – current idelay1

26

[10..0] – (R) – Idelay Value in picosecond from ADC chanel select by
IDELAYCONTROL2 [3..0]

 [19..11] – (R) – Idelay Count Value from ADC channel 0-8 select from
IDELAYCONTROL1[15..13]

[28..20] - Idelay Count Value from ADC channel 0-8 select from
IDELAYCONTROL1[15..13]

[29] – Done Loading Idelay Count Value (Success)
[30] – Failed to Load Idelay Count Value
[31] – Done Load Idelay Count Value

 *** See Appendix C for description of bit 29,30,31

IDELAY STATUS 2 (0x54C) (AUX 19)

 [31…0] – (R) – current idelay2

27

Appendix A - Hall D FADC250 Data Format (9/16)

Data Type List

0 – block header
1 – block trailer
2 – event header*
3 – trigger time
4 – window raw data
5 – 8 – (reserved)
9 – pulse parameters**
10 – 11 – (reserved)
12 – scaler data
13 – (reserved)
14 – data not valid (empty module)
15 – filler (non-data) word

 * reformatted data type
 ** new data type – information from previous data types 7, 8, 10
 (data types not marked with * or ** remain unchanged)

Data Word Categories

Data words from the module are divided into two categories: Data Type Defining
(bit 31 = 1) and Data Type Continuation (bit 31 = 0). Data Type Defining words contain
a 4-bit data type tag (bits 30 - 27) along with a type dependent data payload (bits 26 - 0).
Data Type Continuation words provide additional data payload (bits 30 – 0) for the last
defined data type. Continuation words permit data payloads to span multiple words and
allow for efficient packing of raw ADC samples and pulse parameters. Any number of
Data Type Continuation words may follow a Data Type Defining word. The scaler data
type is an exception. It specifies the number of 32-bit data words that follow.

Data Types

Block Header (0) – Word 1 indicates the beginning of a block of events. Optional
continuation Word 2 contains ADC processing parameters.

Word 1:
 (31) = 1
 (30 – 27) = 0
 (26 – 22) = slot number (set by VME64x backplane)
 (21 – 18) = module ID (‘1’ for FADC250)
 (17 – 8) = event block number
 (7 – 0) = number of events in block

Word 2:

(31) = 0

28

(30 – 29) = 0
(28 – 18) = PL (# samples before trigger point for processing to begin)
(17 – 9) = NSB (# samples before threshold crossing to include in processing)

 (pulse modes)
(8 – 0) = NSA (# samples after threshold crossing to include in processing)

 (pulse modes)

Block Trailer (1) – indicates the end of a block of events.
 (31) = 1
 (30 – 27) = 1
 (26 – 22) = slot number (set by VME64x backplane)
 (21 – 0) = total number of words in block of events

Event Header (2) – indicates the start an event.
 (31) = 1
 (30 – 27) = 2

(26 – 22) = slot number (set by VME64x backplane)
 (21 – 12) = trigger time (bits 9 – 0 (see below))
 (11 – 0) = trigger number

Trigger Time (3) – time of trigger occurrence relative to the most recent global reset.
Time in the ADC data processing chip is measured by a 48-bit counter that is clocked by
the 250 MHz system clock. The six bytes of the trigger time

 Time = TA TB TC TD TE TF

are reported in two words (Type Defining + Type Continuation). (Both Words or Word 2
alone may be suppressed from readout by the user.)

Word 1:
 (31) = 1
 (30 – 27) = 3
 (26 – 24) = TC bits 2 – 0 (duplicated in Word 2)
 (23 – 16) = TD
 (15 – 8) = TE
 (7 – 0) = TF

Word 2:
 (31) = 0
 (30 – 24) = reserved (read as 0)
 (23 – 16) = TA
 (15 – 8) = TB
 (7 – 0) = TC

29

Window Raw Data (4) – raw ADC data samples for the trigger window. The first word
identifies the channel number and window width. Multiple continuation words contain
two samples each. The earlier sample is stored in the most significant half of the
continuation word. Strict time ordering of the samples is maintained in the order of the
continuation words. A sample not valid flag may be set for any sample; e.g. the last
reported sample is not valid when the window consists of an odd number of samples.

Word 1:
 (31) = 1
 (30 – 27) = 4
 (26 – 23) = channel number (0 – 15)
 (22 – 12) = reserved (read as 0)
 (11 – 0) = window width (in number of samples)

Words 2 - N:
 (31) = 0
 (30) = reserved (read as 0)
 (29) = sample x not valid
 (28 – 16) = ADC sample x (includes overflow bit)
 (15 – 14) = reserved (read as 0)
 (13) = sample x + 1 not valid
 (12 – 0) = ADC sample x + 1 (includes overflow bit)

Pulse Parameters (9) – computed pulse parameters for detected pulses in a channel. The
first word identifies the channel number, event number within the block, and pedestal
information for the window. Multiple continuation word pairs contain information about
the pulses detected. For a channel with hits detected:

Word 1: Channel ID and Pedestal information (reported once for a channel with hits)
 (31) = 1
 (30 – 27) = 9
 (26 – 19) = event number within block (1 – 255)
 (18 – 15) = channel number (0 – 15)
 (14) = pedestal quality
 (13 – 0) = pedestal sum

Word 2 : Integral of first pulse in window
 (31) = 0
 (30) = 1
 (29 – 12) = 18-bit sum of raw samples that constitute the pulse data set
 (11 – 9) = integral quality
 (8 – 0) = number of samples within NSA that the pulse is above threshold

Word 3 : Time of first pulse in window
 (31) = 0
 (30) = 0
 (29 – 21) = coarse time (4 ns/count)

30

 (20 – 15) = fine time (0.0625 ns/count)
 (14 – 3) = pulse peak
 (2 – 0) = time quality

Words 2 and 3 are repeated for each additional pulse found in the window for the channel.

Scaler Header (12) – indicates the beginning of a block of scaler data words. The number
of scaler data words that will immediately follow it is provided in the header. The scaler
data words are 32 bits wide and so have no bits available to identify them. Currently there
are 18 scaler words reported: 16 from individual channels, a timer, and a trigger count. The
scalers and time represent values recorded at the indicated trigger count. Scaler data must
be enabled into the data stream by the user.

 (31) = 1
 (30 – 27) = 12
 (26 – 6) = reserved (read as 0)
 (5 – 0) = number of scaler data words to follow (18 = current)

Data Not Valid (14) – module has no valid data available for read out.
 (31) = 1
 (30 – 27) = 14
 (26 – 22) = slot number (set by VME64x backplane)
 (21 – 0) = undefined

Filler Word (15) – non-data word appended to the block of events. Forces the total number
of 32-bit words read out of a module to be a multiple of 2 or 4 when 64-bit VME transfers
are used. This word should be ignored.
 (31) = 1
 (30 – 27) = 15
 (26 – 22) = slot number (set by VME64x backplane)
 (21 – 0) = undefined

31

Processing Modes

Two processing modes are supported.

Mode 9: reports pulse parameters (type 9) for hits

Mode 10: reports raw window samples (type 4) and pulse parameters (type 9) for hits

Readout Format

Standard: For a block of N events

 Block Header
 Event 1 Header
 Trigger Time 1
 Trigger Time 2
 Data words (event 1)
 Event 2 Header
 Trigger Time 1
 Trigger Time 2
 Data words (event 2)

 Event N Header
 Trigger Time 1
 Trigger Time 2
 Data words (event N)
 Block Trailer

Intermediate compression: For a block of N events and data in events I, J, K

 Block Header
 Event 1 Header (always)
 Event I Header
 Data words (event I)
 Event J Header
 Data words (event J)
 Event K Header
 Data words (event K)
 Block Trailer

Full compression: For a block of N events and data in events I, J, K

32

 Block Header
 Event 1 Header
 Data words (event I)
 Data words (event J)
 Data words (event K)
 Block Trailer

Notes about the Readout Format

For the Full compression readout format the trigger time in the Event 1 Header enables
the detection of synchronization loss among modules. If synchronization is lost (e.g.
module misses a trigger), it will likely not be discovered until the next Sync Event (TS
pauses triggers and test for synchronization). Synchronization loss thus requires that
multiple blocks of events be discarded. Since the Standard and Intermediate
compression readout formats have the trigger time available for each event (within the
Event Header for Intermediate compression format), the exact point of synchronization
loss can be discovered in off-line analysis. Events can be re-aligned, with a loss of only
one event for each trigger missed by a module.

For simplicity of design the ADC Processing FPGA always transmits data to the Control
FPGA in Standard format (less Block Header or Trailer words). Based on the readout
format selected by the user, the Control FPGA suppresses data words that are not
required to be read out.

When using processing mode 10, raw window samples (type 4 words) will precede pulse
parameters (type 9 words) for a given channel. This is done for performance reasons.
Because type 4 words do not have an event number in their definition, it is recommended
that the Standard or Intermediate compression readout formats be used for this mode.

33

34

Appendix B: Example of Data Format for Production Mode 9

1st Trigger Occurred at Time 0x123456
Channel 1 and 15 has 1 good pulse each

Event Header (2) – indicates the start an event.
Word 1:
 (35 – 32) = 0001
 (31) = 1
 (30 – 27) = 2

(26 – 22) = 00000
 (21 – 12) = “00” & x”56” (trigger time (bits 9 –))
 (11 – 0) = x”0001”

Trigger Time

Word 2:
 (35 – 32) = 0000
 (31) = 1
 (30 – 27) = 3
 (26 – 24) = “011” TC bits 2 – 0 (duplicated in Word 2)
 (23 – 16) = x”4”
 (15 – 8) = x”5”
 (7 – 0) = x”6”

Word 3:
 (35 – 32) = 0000
 (31) = 0
 (30 – 24) = 0
 (23 – 16) = x”1”
 (15 – 8) = x”2”
 (7 – 0) = x”3”

Pulse Parameters

Channel 1 data
Word 4: Channel ID and Pedestal information (reported once for a channel with hits)
 (35 – 32) = 0000
 (31) = 1
 (30 – 27) = 9
 (26 – 19) = 00000000 event number within block (0 – 255)
 (18 – 15) = 0001
 (14) = 0
 (13 – 0) = pedestal sum
0xC800----

35

Word 5 : Integral of first pulse in window
 (35 – 32) = 0000
 (35 – 32) = 0000
 (31) = 0
 (30) = 1
 (29 – 12) = 18-bit sum of raw samples that constitute the pulse data set
 (11 – 9) = 000
 (8 – 0) = number of samples within NSA that the pulse is above threshold

Word 6 : Time of first pulse in window
 (35 – 32) = 0000
 (35 – 32) = 0000
 (31) = 0
 (30) = 0
 (29 – 21) = coarse time (4 ns/count)
 (20 – 15) = fine time (0.0625 ns/count)
 (14 – 3) = pulse peak
 (2 – 0) = time quality

Channel 15 data
Word 7: Channel ID and Pedestal information (reported once for a channel with hits)
 (35 – 32) = 0000
 (31) = 1
 (30 – 27) = 9
 (26 – 19) = 00000000 event number within block (0 – 255)
 (18 – 15) = 1111
 (14) = 0
 (13 – 0) = pedestal sum

Word 8 : Integral of first pulse in window
 (35 – 32) = 0000
 (31) = 0
 (30) = 1
 (29 – 12) = 18-bit sum of raw samples that constitute the pulse data set
 (11 – 9) = 000
 (8 – 0) = number of samples within NSA that the pulse is above threshold

Word 9 Time of first pulse in window
 (35 – 32) = 0000
 (31) = 0
 (30) = 0
 (29 – 21) = coarse time (4 ns/count)
 (20 – 15) = fine time (0.0625 ns/count)
 (14 – 3) = pulse peak
 (2 – 0) = time quality

Event Trailer: Indicate the end of an event.
Word 10

36

 EVENT_TRAILER = "0010" & X"E8000000";

37

Appendix C: Control Bus Memory Map for Registers
Unused Bits are read back as zeroes
Failure to adhere to Min values can result in unpredictable results

Name

[VME
ADDRESS]

Width
(Bits)

Quantity Access Primary
Address
(Secondary
Address)

Power
Up
Values
(hex)

Function

STATUS0
[0x100]

16 1 R 0x0000
(---)

 Bits 14 to 0: Code Version
Bit 15: 1= Command can be sent to
AD4229

STATUS1
[0x104]

16 1 R 0x0001
(---)

 15 : 1 Done all Trig received
11-0 : TRIGGER NUMBER

STATUS2
[0x108]

16 1 R 0x0002
(---)

 Monitored Pedestal
15 → Sum is valid
14 → 0 Sum OK. 1 One or more is
out of bound
13-0 → Sum

CONFIG1
[0x10C]

16 1 R/W 0x0003
(---)

0040 Bit 0-2 (old code process mode):

Bit 3: 1:Run
Bit 5-4 : Max Number of Pulses in
Mode 10 and 9

Bit 6: 1 Inverts ADC data output
Bit 7: Test Mode (play Back).

Bit 9-8:
 00 → mode 9 (pulse parameters)
 01 → mode 10 (pulse parameters &
raw)
 11 → mode 11 (raw)

11-10 NSAT
13-12 TNSAT

15→ Request Sum of Pedestal for
monitoring purpose

CONFIG2
[0x110]

 R/W 0x0004
(---)

0040 When 1 ADC values = 0
Bit 0 → ADC 0
Bit 1 → ADC 1
Bit 2 → ADC 2
Bit 3 → ADC 3
Bit 4 → ADC 4
Bit 5 → ADC 5
Bit 6 → ADC 6

38

Bit 7 → ADC 7
Bit 8 → ADC 8
Bit 9 → ADC 9
Bit 10→ ADC 10
Bit 11→ ADC 11
Bit 12→ ADC 12
Bit 13→ ADC 13
Bit 14→ ADC 14
Bit 15→ ADC 15

CONFIG 4
[0x114]

16 1 R/W 0x0005 0040 15..12=> Select which ADC receive
IDELAY control bits and read back
IDELAY comparator error
15..12 => Select which ADC Idelay
Error Bits to monitor
11=> Idelay comparator reset
10=> Increment IDELAY N delay
value
9 => Decrement IDELAY P delay
value
8 => Reset IDELAY
11 => IDELAYE3_EN_VTC_D
10 => LdNextIdlyCh
9 => ConfigIdelay
8 => IDELAYCTRL_RST
7 => rising edge execute ADC
command
6 => 1 write to all ADC
5 => 0 write to ADC
 1 read from ADC. Data is at
Stat 4
4 => 1 Reset ADC
3..0 => Select ADC to write to or read
from

CONFIG5
[0x118]

16 1 0x0006 0040 15..8 => Register inside ADC
7..0 => Data to write to register.

PTW
[0x11C]

9 1 R/W 0x0007
(---)

0010 PTW + 1 number of ADC sample to
include in trigger window.
PTW = Trigger Window (ns) * 250
MHz.
Minimum is 6.

PL
[0x120]

11 1 R/W 0x0008
(---)

0000 Number of sample back from trigger
point.
PL = Trigger Window(ns) * 250MHz

NSB
[0x124]

4 1 R/W 0x0009
(---)

0000 3..0: Read Back Path NSB
Number of sample before trigger point
to include in data processing. This

39

include the trigger Point. When NSB
bit 3 is 1:
NSA has to be > NSB bits 1,0 by at
least 4 => NSA – (NSB bits 1,0) ≥ 3

NSA
[0x128]

15 1 R/W 0x000A
(---)

0005 8..0: Read Back Path NSA
Number of sample after trigger point
to include in data processing.
Minimum is 2

14..9: Trigger Path NSA

TET
[0x12C-148]

12 16 R/W 0x000B -
0x001A

0000 Trigger Read Out Energy Thredhold.

CONFIG6
(Monitored
Pedestal
Sum)

[0x14C]

16 1 R/W 0x001B 0000 13-10 MNPED : The number of ADC
sample to sum up is MNPED + 1. Min

is 4
9-0 PMaxPed : When an ADC
Samples is greater than this, bit 14 of
the 14 bits (13-0) Sum will be set.

CONFIG7
(Read Back
Pedestal
Sum) [0x150]

16 1 R/W 0x001C 0000 13-10 NPED : The number of ADC
sample is NPED + 1
9-0 MaxPed

Test Wave
Form

[0x154]

16 1 R/W 0x001D 0000 Write to PPG. Read should
immediately follow write.

ADC
Pedestal
Subtract

[0x158-194]

12 16 R/W 0x001E-
0x002D

0000 Subtract from ADC(0-15) Count
before Summing

Config 3
[0x198]

16 1 R/W 0x002E 0000 15 : Sync Disable
 (11..0) Trigger Path Processing
Threshold

STATUS 3
[0x19C]

16 1 R 0x002F FPGA core temp (DieTemp)
5 - DoneReadSeriallRomAt25040
4 - DoneLdIdelayCntVal
3 -
Detect_ERROR_IDDR_P_CH8_15
2 -
Detect_ERROR_IDDR_N_CH8_15
1 - Detect_ERROR_IDDR_P_CH0_7
0 - Detect_ERROR_IDDR_N_CH0_7

STATUS 4
[0x1A0]

16 1 R 0x0030 14 – Vcc Aux is out of range
13 – Vcc Int is out of range
12 – FPGA over 85 degree C
11 – FPGA over 125 degree C

40

9-0 Result of ADC AD4229 register
read back

Roque_PTW_
Fall_Back

[0x1A4]

16 1 R/W 0x0032 When 1 enable send raw data when
any of the first 4 samples is above
threshold.
When 0 proceed to calculate SUM and
TDC
Bit 0 → ADC 0
Bit 1 → ADC 1
Bit 2 → ADC 2
Bit 3 → ADC 3
Bit 4 → ADC 4
Bit 5 → ADC 5
Bit 6 → ADC 6
Bit 7 → ADC 7
Bit 8 → ADC 8
Bit 9 → ADC 9
Bit 10→ ADC 10
Bit 11→ ADC 11
Bit 12→ ADC 12
Bit 13→ ADC 13
Bit 14→ ADC 14
Bit 15→ ADC 15

41

Appendix B

 Bias DAC Count ADC Count With No Input (in hex)

4096 1000

4000 1000

3500 1000

3300 66

3100 173

3000 1FB

2900 281

2800 30A

2700 393

2600 419

2500 49E

2400 526

2300 5ae

2200 632

2100 6BA

2000 741

1900 7C6

1800 850

1700 8D5

1600 95B

1500 9E1

1400 A6B

1300 AF0

1200 B7B

1100 C00

1000 C86

900 D0E

800 D91

700 E19

600 EA1

500 F29

400 FAC

300 1FFF

42

Appendix D:

Idelay Values for FPGA ADC Input Pins:

Description:

 ADC output data is Double Data Rate (data bits change on rising edge and falling
edge of clock) at 250MHz. The FPGA clock has to be (approximately) at the center of
the data bits. Due to a difference delay (when data and clock arrived at the FPGA)
between the data and clock, the data have to be delayed. FPGA’s delay circuit has 512 tap
with each tap provided approximately 17.857 pS of delay. The tap’s delay is varying with
temperature and voltage. To accommodate this variation, the desired delay for each ADC
is found at the current temperature and voltage and stored in on board serial ROM. The
FPGA is compiled with a delay of 1000pS for all ADC channels. The tap values that
provided this 1000pS at the current temperature and voltage are then load when FPGA is
booting. These tap values are read by user to determine “tap per ps”. The “tap per ps” is
multiplied by the desired delay stored in ROM. The tap count is then loaded into the
Idelay in the FPGA. The FPGA changes these count based on temperature and voltage to
keep the desired delay (stored in ROM).

Loading Idelay values for FPGA’s input citcuit:

1) Run the Calc_Load_IdelayCntVal routine AT POWER UP in For_Coda_1.cpp file .
The file is located at M:\FE\fADC-250V3\C_test_code_CPP2022\For_Coda. This
routine does the following:
a) Read the deisre delays (in pSec from serial ROM on the FADCV3 board => IdelayValInRom

b) Read the present Idely Count Values (position of 512 taps) => InitIdelyCountValue
c) Tap delay resoultion; TapRes = 500 pS/InitIdelyCountValue

d) NewTapVal = TapRes * IdelayValInRom
e) Program NewTapVal into Idelay

2) Read IDELAY STATUS 1 (0x548) (AUX 18)
a) If bit 29 is a 1 then the count values are successfully loaded
b) If bit 30 is a 1 then the count values are not loaded. Something is wrong with the

IDELAY circuit in the FPGA

43

Appendix F:

Rebooting the FPGA

The host can reboot the FPGA from configuration ROM by setting bit 11 of CONFIG
ROM CONTROL 0 (0x58)

	Using the FADC250 V3 Module (V6 – 9/14/24)

