

cMsg – A Publish/Subscribe Interprocess

Communication Package and Framework

Elliott Wolin, D.Abbott, V.Gurjyan, G.Heyes, E.Jastrzembski, D.Lawrence. C.Timmer
Jefferson Lab Data Acquisition Group

12000 Jefferson Ave

Newport News, VA 23606 USA

 Abstract-Asynchronous publish/subscribe messaging is a simple

but powerful interprocess communication technique that is widely

used in industry. It is less widely used in the academic/research

world, partly because commercial implementations are fairly

expensive.

 cMsg is both a full-featured publish/subscribe package and a

framework within which one can deploy multiply underlying

communication packages. The underlying packages need not

implement asynchronous publish/subscribe messaging. This

framework feature allows one to unify all communications under a

single, flexible API, and allows for integration of legacy

communication packages. Performance is excellent, making cMsg

suitable for use in controls applications as well as in high-speed data

transfer applications. cMsg will be used extensively by the next

generation of experiments at JLab.

I. INTRODUCTION

 Interprocess communication (IPC) is a vital component of any

control or data acquisition system. Many paradigms exist, but

asynchronous publish/subscribe (pub/sub) message-passing has

been widely adopted for many reasons, particularly by industry.

It is extremely general and flexible, efficient implementations

exist, and other IPC paradigms can be implemented using it as a

foundation. Usage is usually quite simple, and stub generators

and interface definition languages are not needed.

 The cMsg package includes a complete asynchronous

publish/subscribe component that is simple to use “right out of

the box.” It supports C, C++, and Java clients, user programming

is quite simple, and message transfer is very efficient. The

server component is written in pure Java so it runs on any Java

Virtual Machine (JVM) independent of the underlying computer

architecture. Just a few lines of code are needed to implement

simple cMsg IPC, so test programs can be written and working in

minutes. With proper firewall configuration cMsg can easily run

over distributed networks.

 But cMsg is quite a bit more than an asynchronous pub/sub

IPC package. It was originally designed for a different purpose,

to unify disparate IPC protocols under a single API. Our

motivation was our use of numerous legacy IPC packages and

protocols in the Jefferson Lab data acquisition package CODA

[1]. Replacing these was tedious, as each was being called with

its native API. We decided instead to create a package with a

single API and a dispatching layer underneath, code everything

to the new API, and use a runtime parameter of the API to select

which underlying protocol to use in each instance. It was further

designed to be simple to add new underlying protocols, both at

the client and server levels. This would allow us to replace

underlying packages and protocols at will.

 Along the way we realized we needed to create new

underlying protocols, as existing ones were inadequate to meet

the needs of the next generation of experiments at the upgraded

JLab 12 GeV accelerator. One JLab experiment (CLAS in Hall

B) had extensive experience and great success using a

commercial pub/sub package (SmartSockets by Tipco), so we

decided that one of the new protocols would implement full

pub/sub messaging.

 Requirements for the new pub/sub protocol, appropriate for

JLab DAQ distributed monitoring and control applications, were:

• Handle moderate message rates (100’s of Hz)

• Handle moderate message sizes (1000’s of bytes)

• Handle hundreds of clients

• Work on Unix (many flavors), vxWorks

• C/C++ and Java API’s

• No commercial components

Note that our emphasis was on robustness, simplicity, and

flexibility, and not necessarily on high performance. Very high

speed and high volume data transfer, needed in JLab DAQ

systems, is implemented via a different, custom-tailored package

(the ET system, see report at this conference).

 As will be described below, performance of our

implementation substantially exceeded requirements, and cMsg

pub/sub IPC is now being used for low to moderate rate DAQ

systems at JLab and elsewhere.

 In Section II we describe the publish/subscribe paradigm. In

Section III we discuss using cMsg simply as a pub/sub package.

In Section IV we discuss using cMsg as a framework for

implementing multiple underlying protocols and as a proxy

server. In Section V we discuss performance of the full pub/sub

implementation. In Section VI we discuss the role of Java in

real-time and control systems. Finally Section VI contains a

summary and conclusions.

II. WHAT IS PUBLISH/SUBSCRIBE

 The asynchronous publish/subscribe interprocess

communication paradigm (a type of “Message Oriented

Middleware”) is widely used in industry and has proven to be

very powerful and successful; yet the model is deceptively

simple.

 In asynchronous pub/sub messaging, producers first fill

message objects, then “publish” the messages to abstract

“subjects”, in a “launch-and-forget” mode. Message consumers

“subscribe” to the abstract subjects and provide callbacks to

handle messages as they arrive, in a “subscribe-and-forget”

mode. Neither producer nor consumer know of each other’s

existence. A single process can be both a producer and

consumer.

 The asynchronous nature of the paradigm matches well the

asynchronous nature of communication within real-time and

online control systems. Here processes are often multi-threaded

and perform multiple tasks. Control information arrives

sporadically and must be handled as it arrives and on a priority

basis. The same applies concerning status information, in that

such processes can only send out information when higher

priority tasks are not pending.

 Note that the flexibility of the subject space allows multiple

groups of processes to communicate without interfering with

each other.

 In contrast, in peer-to-peer messaging, pairs of processes

exchange information directly, and every message sent by one of

a pair is received by the other. Here the highest throughputs can

be achieved since distribution and network overhead can be

minimized. However, peer-to-peer messaging does not scale

well, as all processes that want to send or receive messages must

be connected to each other, and a process that wants to send a

message to all other processes must send the message to each

individually.

III. CMSG AS A FULL-FEATURED PUB/SUB PACKAGE

 The cMsg package includes a full-featured implementation of

the asynchronous pub/sub paradigm with some useful

synchronous peer-to-peer mechanisms added for convenience.

Unlike other pub/sup packages, cMsg message routing and

subscriptions are based on a pair of tags, “subject” and “type”

(both are arbitrary strings), and subscriptions support wildcard

matching. Message routing is performed behind the scenes by

one or more pure Java servers.

 Interconnected cMsg servers implement hot-failover such that

if one fails its clients automatically will reconnect to a working

server. All connections and subscriptions are reestablished, and

the only evidence a client might see is a brief delay and possible

loss of messages while the system automatically reconfigures.

 The cMsg user API is designed to be very simple to use.

Below are some code snippets demonstrating how to program

common tasks. Note that the UDL (Universal Domain Locator)

below is the runtime parameter mentioned earlier used to select

the underlying protocol, here the full pub/sub implementation.

UDL’s are strings and will be fully discussed in the next section.

Finally, messages can contain any number of user-settable fields

of many types. Below only the text field is used.

Sending a Message

 #include <cMsg.hxx>

 // connect to cMsg system
 // UDL selects underlying protocol

 // name and description are arbitrary strings

 cMsg c(UDL, myName, myDescription);

 c.connect();

 // create and fill message object

 // subject and type are arbitrary strings

 // in this example the payload contains a single text field, an arbitrary string

 cMsgMessage msg;
 msg.setSubject(mySubject);

 msg.setType(myType);

 msg.setText(myText);

 // send message
 c.send(msg);

Receiving a message

 #include <cMsg.hxx>

 // connect to cMsg system
 cMsg c(UDL, myName, myDescription);

 c.connect();

 // subscribe and start receiving

 c.subscribe(mySubject, myType, new myCallback(), NULL);
 c.start();

 // do something else…

where the callback class is:

 class myCallback : public cMsgCallback {

 // see user manual for description of userObject

 void callback(cMsgMessage* msg, void* userObject) {

 cout << "message subject is: " << msg->getSubject() << endl;

 }

 };

Synchronous messaging

 A synchronous messaging facility is provided for

convenience. Here the requester uses a special call to indicate

this is a synchronous request. The receiver then marks its

response appropriately and it is delivered only to the original

requester.

 #include <time.h>

 struct timespec timeout = {1,0}; // one second timeout

 cMsgMessage *response = c.sendAndGet(msg,timeout);
 // exception thrown if no message arrives within timeout

(what else needs to be said about the cMsg subdomain???)

 cMsg was originally designed to be a thin dispatching layer on

top of a number of legacy IPC packages/services/protocols or

messaging spaces, with the ability to dynamically add new ones

at the client level. We call these messaging spaces “domains”.

Domains are specified at runtime, and in general are completely

independent. A number of them exist, and additional ones are

easily created.

 The cMsg domain is a special domain that employs a proxy-

server (pure Java) that supports dynamic addition of underlying

packages/services/protocols at the proxy-server level. Here the

client communicates with the proxy server using a proprietary

protocol, and the server performs the IPC request using a

specified underlying protocol on the client’s behalf. This solves

the problem of clients needing to communicate with a protocol

which is unavailable on the architecture they are running on

(common on VXWorks). These pluggable protocols in the

proxy-server are called subdomains of the cMsg domain.

 In a decision we sometimes question, we named the fully-

featured pub/sub implementation described in the previous

section “the cMsg subdomain of the cMsg domain”. That is, the

client connects to the cMsg domain to access the proxy-server,

then requests the server to perform the IPC using the pub/sub

system described earlier, i.e. within the cMsg subdomain.

 Domains (and subdomain information) are specified by a

Universal Domain Locator or UDL, a string with syntax similar

to and inspired by http URL’s. The UDL is a parameter given to

the cMsg connect call, allowing run-time determination of the

protocol to use.

 Domains need not implement the full cMsg API, and often

don’t. Domains can be very simple, e.g. implementing write-

only access to a local file (File domain), or complicated, as in the

proxy server domain (cMsg domain) described above.

 Similarly, many subdomains exist, and they too need not

implement all API features. The simplest subdomain is the

LogFile subdomain, which implements write-only access to a file

by the proxy server. Note that unlike the File domain, where

each client writes to its own file, in the LogFile subdomain (of

the cMsg domain) many clients can write to the same file.

 The most sophisticated subdomain is the cMsg subdomain (of

the cMsg domain), which implements the full pub/sub package

described in the previous section.

 See the User’s Manual [2] for a description of numerous

other features of the cMsg package.

V. PERFORMANCE OF PUB/SUB SYSTEM

 The proxy-server and cMsg subdomain code are written in pure

Java (1.5 or later), and server performance is quite impressive.

Although little effort was put into optimizing network speed,

server performance exceeds our requirements by two orders of

magnitude. This has led us to consider uses for cMsg far beyond

our original plans, e.g. for low to moderate speed data transfer in

smaller DAQ systems.

 Below we show measurements of cMsg throughput employing

both Java and C clients on Linux and vxWorks. In all cases the

cMsg server was running on a 2.4 GHz quad-Opteron RHEL

server, and all nodes had Gbit Ethernet interfaces connected to a

Cisco Catalyst 4000 series switch.

 We identify two regimes: high message rate/small message

size, or the “control” regime, and low message rate/large

message size, the “DAQ” regime. The former is generally limited

by CPU power on the client and server nodes, the latter by

network bandwidth and resources required to service the

network. The former is best understood from Fig. 1 , the latter

from Fig 2.

 In Fig 1 we plot message rate vs. message payload size

(overhead is 86 bytes) for a number of different conditions. For

the top two curves the producer and consumer ran on the same

node as the server, so data did not move over a network. In the

control regime the server handled over 33,000 messages per

second with Java clients, and slightly less for C clients,

somewhat surprising since one might expect C client

performance to exceed Java client performance. These results

place upper limits on server and client performance in our test

setup, and are useful when interpreting later results.

 For the next two results both producer and consumer were

running on separate 2 GHz dual-Xeon RHEL machines. To our

surprise again Java clients displayed equal or better performance

than C clients over most of the range. In the control regime Java

handled over 25,000 messages per second over the network

(actually twice, once from producer to server, then again from

server to consumer).

 The bottom curve is for a vxWorks C producer running on a 1.3

GHz MVME6100 PPC 7457 processor sending messages to a C

consumer on a 2 GHz dual-Xeon RHEL machine. In the control

regime performance was about the same as for the Linux C

producer.

 Network bandwidth effects are most clearly seen in Fig 2,

where total data throughput is plotted vs. message size, and

results become interesting above about 1 kByte message size.

 In the non-network case the data transfer rate peaks at about

330 MBytes/sec, but at different payload sizes for Java and C

clients. Note that C performance unexpectedly falls off rapidly at

large payload size.

 In the network case the C rate peaks at about 110 MBytes/sec,

or at almost 90% of the full Gbit bandwidth, but then falls off

sharply above about 1 MByte payload size, similar to the non-

network case. We do not completely understand these falloffs at

large payload size, but suspect they may disappear with careful

tuning of the C code and network stack parameters.

 Java performance peaks at about 80% of the full Gbit

bandwidth over a wide range, and does not fall off. We note that

in both the C and Java cases the server machine was using an

entire CPU to service the network traffic.

 vxWorks performance is not nearly as good, not surprising

since the CPU and Ethernet hardware are not as powerful as

those in the Linux machines, and the vxWorks operating system

was not optimized for Gigabit network performance.

VI. ROLE OF JAVA IN REAL-TIME AND ONLINE SYSTEMS

 Although Java is playing a serious role in many modern DAQ

and online systems, it is only commonly used for the least

demanding tasks, such as control GUI’s. Many people simply do

not believe Java is up to more demanding tasks. Our experience

and results are quite to the contrary.

 We chose to develop the cMsg server and initial client API’s in

Java because of its many advanced features (esp. in Java 1.5) and

the vastly reduced development time, compared to C, we had

experienced in other projects. Thus we were able to very quickly

modify the Java code as our thinking developed. Once this

design/prototype phase was complete we wrote the C client

library. This stage took much longer than the previous stage, due

to the lack of high-level facilities in C (e.g. concurrent hashmaps)

and a number of other issues, even though we were simply

duplicating the Java functionality in C (note that the C++ API is

simply a wrapper around the C API). The difference was quite

striking.

 We further had expected that the C performance would exceed

Java performance, but this again was not the case. Despite

careful tuning of the C code by an experienced C network

programmer, and little tuning of the Java code, the Java code out-

performed the C code in the majority of our tests. And the fact

that the Java code runs at 80% of the Gbit bandwidth

demonstrates that there is little left to be gained1.

1 Java performance depends critically on specifying the correct flags to the Java

Virtual Machine (JVM). Including the “-server” flag is very important for both

client and server. Be sure that the client JVM has plenty of memory via the “-
Xms” and “-Xmx” flags. The server garbage collection scheme is also important,

VII. SUMMARY AND CONCLUSIONS

 The cMsg system is a simple, powerful, flexible, and open-

source implementation of the asynchronous publish/subscribe

paradigm, as well as a framework within which one can deploy

multiple underlying IPC systems. The underlying IPC systems

need not implement pub/sub IPC. cMsg includes support for

C/C++ and Java clients, and runs on Unix and vxWorks.

 cMsg performance is only limited by network bandwidth on

modern processors, and it exceeds our requirements by two

orders of magnitude. Thus we now use cMsg in low to moderate

rate DAQ systems as well in numerous real-time messaging and

control systems.

 Note that cMsg use is in no way limited to online systems, and

can equally well satisfy a wide variety of interprocess

communication requirements. With proper firewall configuration

cMsg easily will run on WAN’s as well as LAN’s.

 The use of Java in cMsg greatly reduced our development time

compared to C, and Java performance has proven to be excellent,

generally exceeding C performance. Our results clearly

demonstrate that Java is a serious contender for almost any DAQ

or online requirement.

and the “-XX:+AggressiveHeap” and “-XX:+UseParrallelGC” flags proved
useful.

REFERENCES

[1] “The CEBAF On-line Data Acquisition System”,

 G.W.Heyes et. al, Proceedings of the 1994 CHEP

 Conference, April 1994.
 [2] “cMsg User’s Guide”, ftp://ftp.jlab.org/pub/coda/cMsg

Fig. 1 cMsg message rate versus message payload size.

Overhead is 86 bytes.

Fig 2. cMsg data transfer rate versus message payload size.

Overhead is 86 bytes.

