JEventViewer 2.0
User’s Guide

Carl Timmer

Jefferson Lab Experimental Physics Software
and Computing Infrastructure group

26-May-2021

© Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave
Newport News, VA 23606
Phone 757.269.7100

1.

Table of Contents

EVIO EVENT VIBWING ..ottt sttt i
11 L] e = o oSS iii
1.2 PIEIEUISITES ...ttt ettt b ettt ekttt se bt b et b et b et abe e ene e iv
13 [To Yo N[g =T o1 7= o oSS iv
14 T LU SRR PPPRP v

Fle DALA VIBWINGocviietiieiiieee ettt bbb bbbt b bbbt b et b et bt b 7
2.1 SBATCIING .ttt bbbt bt 8

211 BY VAIUE. ... bbb bbb e 8

2.1.2 2V o To%: L1 o] o ST 9

213 BY PAGE ...t e e r e b e b nr e 9

214 By EVio Record/BIOCK HEAAENc.civeiiiieecece st 9

2.15 BY EVIO EVENL ..ottt sttt sttt 9

2.1.6 Y Yo] | 10

Chapter 1

1. Evio Event Viewing

This manual describes a graphical user interface for looking at EVIO format files event-by-
event, although it can also look at any file as a list of 32 bit integer (words).

Figure 1.1: Event-viewing gui

oCe Jevio Event Tree
File View Dict Event Filter

Event # 2|2 Event Q Limit 3 event source [Users /timmer/coda/evioDataFiles /compactEvioBuild.ev.l1z4
< prev next > clear Size dictionary from evio file
EVIO event tree Position +1 +2 +3 + +5 Comments
¥ [<Event> has BANKs: tag=1(0x1) num=1(0x1) datalen=5153 children=3 @ @x26cecdds @x7aad%bdle 0x7e7b9163 B8x55851d84 @x069b36ch
v [BANK of BANKs: 1ag=2(0x2) num=2(0x2) datalen=1733 children=8 5 @x2c@9ec59 Bx771ce26d @x0722e9% 0x1961701e @x118cdaf?
BANK of INT325: 3003 3053) datalen=203 10 @x@3fac7af Bx4a6333a5 8x65a59113 0x5babbeBe ex21fcedlc
@ 5 mg=3(0x3) num=3(0x3) damtan= 15 Ox7dbe3c2d ©x2267dBbe @x53flleab OxSdclSBea @xSldcldcd
BANK of CHARSs: tag=4(0x4) num=4(0x4) datalen=351 pad=1 20 0x3939a833 0x27dfedea 0x8471f7ch 8x4889cd0f 8x76d25a86
SEGS datalen=102 pad=2 25 @x39765cdb Bx26191cdS 0x022e1891 0x2a2494cb 0x2b7c1614
BANK of LONGG4s: tag=41(0x29) num=41(0x29) datalen=406 30 @xlef6ic2la @x61beades @x71121615 Bx6ch20a27 @x79557baf
HallD.DC(6).ypos(6) datalen=203 35 @xafiseesd 0x78e53f7a @x018788a9 0x565177a8 Bx58837cde

48 @x601d4chc Bx4c4f3bZe 0x28737e19 0x710a528c @x184clel

HANDSCAL SRta Rn=ane 45 Ox13f4254a @xTb79F116 OxbfBc93eb @x69469d0b 0x892ead9l

HallD datalen=329 58 @xBbbIcch3 Ox6aas2aff 8x6810199f 0x8a397097 8x6b2da703
HallD datalen=17 55 @x13bbdcSc Bx1baScobl 0x650869af 8x7558b@1c 0x30724695
¥ [=5 BANK of SEGMENTS: tag=15(0xf) num=15(0xf) datalen=1707 childrer 60 @xefasdass Bx57T4BF2F 0x519bb210 0x12c0e240 0x1653529T
SEGMENT of INT325: tag=0(0x9) datalen=203 65 0x110312ea 0x44021075 ax6T1c0lef 8x787233a3 Bx6bBB45D3

70 @xbcbecadd 0x71b8d238 @x53e95875 0x2c65a120 0x15b177dd

SEGMENT of CHARSS: tag=10(0xa) datalen=51 pad=1 75 x71dasSad x68d68629 Ox7cbcfSc3 @x270b4add @xB3ce7Se3

SEGMENT of SHORTL63: tag=11{b) datalen=102 pad=2 B0 0x15239bd2 @x63257a3L @x19fcQd75 0x2962eabf Ox3e9b9286
SEGMENT of LONG64s: tag=41(0x29) datalen=406 85 @x7bS@acfe ©x22012835 Ox6@dad2e3 OxBbTTIAST Ox2cBf72be
SEGMENT of FLOAT325: tag=12(0xc) datalen=203 90 0xB5009aSd Ox526070d3 @x499b895a Ox1de70705 Ox6911fedl
SEGMENT of DOUBLE64s: tag=13(0xd) datalen=406 95 @x5c@23cd5 #x63dbfda3 x29e5Ff67 8x21df8735 @x3c1d497c

100 Ox46623b47 0x10094b77 0x@3b5048¢ Bx1a5a135¢c 0x5119bd58

SEGMENT of CHARSTARSs: tag=14(0xe) datalen=329
105 @x250134ch Bx@562dcic Bx2fle7108 @x78cd18ea Ox41665eT6

¥ [BANK of TAGSEGMENTS: tag=16(0x10) num=16(0x10) datalen=1707

110 @x78931217 0x49831316 @x36bafd13 Bx2eeec7Bb Bx609e4332
TAGSEGMENT of INT32s: tag=17(0x11) datalen=203 115 0x73c88418 0x66ab32e6 8x5422c611 0x4fe0a361 0x764c28a3
TAGSEGMENT of CHARSs: tag=18(0x12) datalen=51 120 Ox53839d77 @x5e920c47 Ox73870398 @x7Bfd3fdc Bx32503949
TAGSEGMENT of SHORT165: tag=19(0x13) datalen=102 125 @x2bB8as95 Bx260bcdeb 0x@351edas B8x4c191122 0x2143f79e
TAGSEGMENT of LONGG4s ag=41(0:25) daalan=406 135 Dcfaeens emmdh 0OFel oassst Doscicoss

el _ X x75az2a. X e x1al %@8clcl

TAGSEGMENT of FLOAT32s: tag=20(0x14) datalen=203 148 @x7b571126 Bx32157fe2 0x2d9373de 0x1d498a82 Ox4068e8ce
TAGSEGMENT of DOUBLEG4s: tag=21(0x15) datalen=406 145 0x2f43b49f 8x415695e9 Ox4d291ffc 8x3bda22c® Ox32ecedfa
TAGSEGMENT of CHARSTARSs: tag=22(0x16) datalen=329 158 Ox748c4BB7 @xBB18bSOe @x42765210 @xST2f8f8Y Bx@92213ce

155 @x73pasdfe @x75e343d2 @x14ae92de 0x42db49de @x5clefSae
160 @x6236dfla Oxdeab238f 0x1425b6a2 @x4d1bdbda3 0x@alc24fb
165 @x3ca@d1Ze Bx596ec858 @x7c5cf751 @x2118308b Bx5aac8558
170 0x6218B8706 Bx5c41706¢ @x353136dc 0x48018389 0x8d2e94cd
175 ex@I610728 0x06298703 0x1c7d696d 8x277b2d%a 0x5677e619
180 @x4b588als @x7bcc2ed0 @x699c27a7 0x37e711d3 Bx28bbc324
185 @x28292485 8x3777121d @xdcel6Bea 0x11c5cf45 0x52cdf6e2
190 @x737299e Bxd778a3f1 8x5b81658¢ Bx6b35ab3a ox1f42bfde
195 @x72fe557e Bx3a26570d 0x2cd1al2e 0x0b46a375 @x198cea23
200 @x74aeBedb 0x2b3e9229 0x54591cb2

version [structure TACSECMENT tag 17 length 812 bytes

compression Lzd4 data type INT32 number 0 description

This version of the JEventViewer is compatible with all evio formats, including the latest, evio
6.0. To run it, using Java 8 or later, simply execute:

java org.jlab.coda.eventViewer.EventTreeFrame

Make sure that the jar files, JEventViewer-2.0.jar and all the other jars in java/jars directory,
are your CLASSPATH environment variable. The alternative to that is executing the
provided script:

scripts/jeviodump

Note that the script is for CODA users and sets the classpath to:

$CODA/common/Jjar

In other words, make sure that your environmental variable CODA is defined
and all the jar files in java/jars are in that directory as well.

1.1 Installation
The code can be downloaded from its github site:
git clone https://github.com/JeffersonLab/JEventViewer.qgit

The default branch is "2.0" but one can insure that by calling:

git checkout 2.0

There’s the jar file JEventViewer-2.0.jar in the java/jars/java8 directory, already pre-built
with Java 8, so one does not need to build it. There’s another one in javal/jars/javal5
directory built with Java 15.

However, to build it simply do:

ant jar

Other options can be seen by calling:
ant help
The output of this command is:

help:
[echo] Usage: ant [ant options] <targetl> [target2 | target3 | ...]

[echo] targets:

[echo] help - print out usage

[echo] env - print out build file variables' values
[echo] compile - compile java files

[echo] clean - remove class files

[echo] cleanall - remove all generated files

[echo] jar - compile and create jar file

[echo] install - create jar file and install into 'prefix'
[echo] if given on command line by -Dprefix=dir',
[echo] else install into CODA if defined

[echo] uninstall - remove jar file previously installed into 'prefix'
[echo] if given on command line by -Dprefix=dir',
[echo] else installed into CODA if defined

[echo] all - clean, compile and create jar file

[echo] Jjavadoc - create javadoc documentation

[echo] developdoc - create javadoc documentation for developer

https://github.com/JeffersonLab/JEventViewer.git

[echo] undoc - remove all javadoc documentation
[echo] prepare - create necessary directories

Although this is fairly self-explanatory, executing ant is the same as ant compile.

That will compile all the java. All compiled code is placed in the generated ./build directory.
If the user wants a jar file, execute ant jar to place the resulting file in the ./build/lib directory.
The java command in the user’s path will be the one used to do the compilation.

1.2 Prerequisites

The other jar files necessary to compile JEventViewer-2.0.jar are in the java/jars directory.
They are compiled with Java 8:

e CcMsg-5.2.jar
e disruptor-3.4.3.jar
e et-16.4.jar

e jevio-6.0.jar

|z4-java.1.8.0.jar

In addition, there are 2 subdirectories:

e javal/jars/java8, which contains all such jars compiled with Java 8, and
e javal/jars/javal5 which contains all jars compiled with Java 15.

If a jar file is not available in Java 15 use the Java 8 version. To generate these jar files, go
to their respective github sites and follow the directions there:

https://github.com/JeffersonlLab/cMsg

https://github.com/Jeffersonlab/disruptor

https://github.com/JeffersonLab/et

https://github.com/JeffersonlLab/evio

https://github.com/1z4/1z4-Java

1.3 Documentation

Basically, you are now reading the only user documentation in either a pdf or word doc. In
the repository, it’s located in the doc/users_guide directory. There is javadoc that can be

https://github.com/JeffersonLab/cMsg
https://github.com/JeffersonLab/disruptor
https://github.com/JeffersonLab/et
https://github.com/JeffersonLab/evio
https://github.com/lz4/lz4-java

generated (ant javadoc or ant developdoc) but would only be useful to a developer or one
trying to modify the source code.

1.4 Features
Here’s a quick list of the main features:

e Valid event sources are files, cMsg messages, and ET buffers
e Fast compare ability for data from different events

e When receiving events through cMsg or ET, they can be filtered based on their CODA
event type (physics, control, etc.) and trigger type if physics event

e View integer data as hex or decimal

e Select dictionary from event source or from separate file containing dictionary
e View the dictionary being used

e Export any evio file in xml format

e View the contents of any file as 32 bit hex integers

e Search for values, positions, evio records/blocks, evio events, or evio errors

In the figure above, starting with the middle of the gui first, the left side shows a tree
structure diagram of the whole, single evio event being viewed. Notice that the type of each
evio structure is given (bank, segment, tagsegment), along with the type of data it contains,
tag, num, size, and # of children. Tag and num are shown in decimal and hex. If a dictionary
is being used, the dictionary name is displayed instead of the corresponding structure type,
data type, tag, and num values.

The right side, on the other hand, shows the data of any selected bank, segment, or
tagsegment that contains a data type and not another container type. Integers can be
displayed in hex or decimal.

A fast compare feature is able to compare data from different events. If the current event is
changed while viewing the data of its selected structure, and if the new event has a structure
with the same hierarchy of tags that the previous selection had, it too is automatically
selected. This facilitates comparing the same structure in each successive event by simply
hitting the “next” event button.

A dictionary can be loaded from a separate xml format file, or it can come embedded in an
evio format file or buffer (cMsg, ET). The viewer allows the user to switch, in the “Dict” menu,
between the different dictionaries if more than one is available. Any dictionary being used
can be displayed instead of the data.

Selecting an ET system or a cMsg server as an event source, in the “Event” menu, brings up
other menus to allow the proper connections to be created and maintained. The only
assumptions made are that in a cMsg message, the evio data is contained in the byteArray

field. Any dictionary is first looked for in the evio data and if none is found, it is looked for in a
String payload item called “dictionary”.

The box in the upper left (under the row of menu buttons), “Event #”, shows the event
currently selected (in this case 2) and allows the user to navigate to the desired event.

The box to its right, “Event Q”, shows different things depending on if the data source is a
file, cMsg message, or ET event. For files, it shows the total number of events (in this case
3). For cMsg messages and ET events, on the other hand, events are continually arriving. In
this case, “Size” shows the number of events currently in an internal queue. “Limit” allows
the user to set the size of this internal queue, while “Clear” will remove all events currently in
the queue. Once this queue is full, nothing else is added. The “Event #” controls can be used
to switch between events in the queue.

Switching between the different event sources can be done in the “Event” menu item. When
selecting a cMsg or ET source, the “Filter” menu is enabled. With this menu, the user can
choose to look at control, partially-built physics, physics events, or any combination as well
as the selecting the run type of interest.

Notice that above the data, there are boxes containing the event and dictionary sources.
Beneath the data are boxes containing information about the selected data structure such as
its structure type, data type, tag, num, length in bytes, description, evio version, and the type
of data compression if any.

Warning about performance: for large files, make sure they are local to the machine that’s
running this program since it uses memory mapping to look at file data. You do not want the
performance hit you'll take for viewing files which are served over the network!

Chapter 2

2. File Data Viewing

The following figure is a screen shot of a file's data

Dict Event Filter
. . @ 7 . » .
openbventFie ~0 -~ obtained by selecting the “View File Bytes” option of the
Open Dictionary 11 =t PR g .
View File Bytes der | saa[0] File” menu of the initial screen shown previously.
Export File to XML E H . H H H
Figure 2.1: Data-viewing gui
Quit
-
e e ev bytes
File
/Users/timmer/coda/evioDataFiles/compactEvioBuild.ev |
Word Position +1 +2 +3 +4 +5 Comments ——Color Key— |
File Info [) 0x00000000 I
S b2 hxasceanar S 0x10000506 0x0000026c 0xcOdadl00 0x00000000 0x00000000 File Header
10 0x00000000 0xP000T4cd 0x00000000 ©x00000000 | 0X00000095
File type [EVIO_FILE 15 0x00000001 0x0000000e 0x00000001 0x00000004 0x00800006
File split # [1 20 0x00000000 0xc0da0100 0x0000022¢ 0x00000000 0x00000000
Header words [56 25 0x00000000 0x00000000 0x00000000 0xB000022e OXx3C786d6C
Re o b 30 0x44696374 0x3e0a2020 Ox3c62616e Ox6b206e61 Ox6d653d22
35 Ox48616c6c 0x44222020 0x20202020 0x20202020 0x20202074
IaCeaRy ytes0 40 0x61673d22 0x362d3822 0x20207479 0x70653d22 0x62616e6b
Evio version [6 45 0x22203e0a 0x20202020 0x20203c64 Ox65736372 0x69707469
Has dictionary [rue S0 Ox6f6e2066 Ox6f726d61 0x743d224e 061726061
Has Gt et False 55 0x7422203e 0x68616c6c Ox5f645f74 Ox6167572 0x616e6765
gLl 60 Ox3c2f6465 @x73637269 Ox7074696f Ox6e3eda2d 0x20202020
Has trailer & index fru 65 0x203c6261 OxGe6b206e Ox616d653d Ox22444328 0x25742922 &
User header bytes [62 70 0x20202020 x7461673d @x22362220 Ox6e756d3d Tor%
User register [0x 75 0x22342220 0x30a2020 O 0x20202020 0x3c6c6561 Rﬁer&y@;@ﬂ
Trailer position (62660 80 0x66206e61 0x6d653d22 Ox78706173 0x28256e29 022202074 Event with error
! 85 0x61673d22 0x3622206e 0x756d3d22 0x3522202f 0x3e0a2020 Evio struct error
Userint1 [Ox 90 0x20202020 0x20202020 0x3c62616e 0x6b206e61 Ox64653d22
Userint2 [ox 95 0x79706f73 0x28256e29 0x22202074 Ox61673d22 0x3622206e T —
= 100 x756d3d22 0x3622202f 0x30a2020 0x20202020 0x3c216261 Eventnormal |
Search By 105 Ox6e6bz03e 0x0a202020 0x2020203c Ox62616e6b 0x206e616d Word value
Word Value 110 Ox653d2242 0x43414c22 0x20202020 @x20207461 0x673d2237 et
- 115 0x22203e0a 0x20202020 ©0x20202020 Ox 0x65616620 [Current selection |
Word Position 120 Ox6e616d65 0x3d227828 0x256e2922 0x20746167 0x3d223722
Page Scrolling 125 Ox206e756d 0x3d22312d 0x3322202f @x3e0a2020 0x20202020
© Evio Record 130 0x3c216261 OxGe6b203e 0x0a20203c @x2f62616e 0x6b203e0a
135 0x20203c64 0x69637445 0x6e747279 @x206e616d @x653d2253
Evio Event 140 0x45473522 0x20746167 0x3d223522 0x203e0a20 0x20202020
et 145 0x20203c64 Ox65736372 069707469 @x6f6e2066 Ox61726d61
150 0x743d224f 0x6C642046 Ox6T726061 @x7422203 @x74616720
155 0x35206465 0x73637269 0x7074696f Ox6e3c2f64 0x65736372
Search For 160 0x69707469 OxGf6e3eda 0x20203c2f @x64696374 Ox456e7472
165 Ox793eda3c Ox2f786d6c 0x44696374 @x3e0a0000 0x00002856
0xc0da0100 B 170
175 0x00000000 0xc0dad108 0x0000all8 ©Ox00000000 ©x0000G000 Record Header
180
Search Controls 185 0x00001422 0x00011001 0x000006c6 ©x00021002 0x00R00RCC
< > 190 0x00030b03 0x05c31c98 0x44d1dc2b 0x785cc48b @x5debb6e2
195 0x1ba99155 0x66051442 0x2a112181 0x3e29b7a5 0x6601833a
St (Stop 200 0x16defd06 Ox5c6bd049 @x061dbfff Ox60dbe2la Ox302705ca
205 0x5da9%33b7 0x6dbla342 0x32c217ca 0x79f2a5e2 0x7d90e09d
B 210 Oxs2fféecS Ox447b@8lc @x1709daa3 0x207a57d1 Oxd8(669d9
215 0x1f5010e7 @x86cc6861 @x38d21427 Ox5cBB1504 Ox51d209fd
Recond Info 220 0x7d96cdGe 0x671e8a72 0x50252e0a Ox1bled532 @x53a74221
225 0x00852986 Oxe32a7cd Oxlca3BeSa Ox4aB2b8cb Ox3bcf5a3s
guiai s 1110326 230 0Ox115eb274 @x52672bda @x68d9ddc2 Ox4def7fsb Ox@3edb75e
Record # [1 235 0x11codbd6 @x2ceel759 @x7705fScd OxS55759b7 Oxdeccd9de
Header words [14 240 0x557685e5 Ox7ce61446 @x066b76Td Ox67d6d98f 0x@10503b9
Boent comit B 245 0x181b2bbS Ox6bf72675 0x3790764 Ox63eb252a Oxde6d8Ges
250 0x27e90973 @x2fbddcas @x5497388b Ox3de76aac Ox18f9bbdc
index array bytes 18 255 0x343d0aab Ox6eald630 @x575al5dc OxBOcIF1S3 0x@5429d3a
Version [6 260 0x0bedl06e 0x3162c149 0x208eSadc 0x6931da35 0x549e1398
Has dictionary [false 265 Ox15ef9fc7 @x8c31313c OxSTfbS16b Ox25d68603 Ox64ddde2d
T inte False 270 0x73f7e7c7 @x1cS8Bcbl @x0e225802 0x7181a348 Ox24aB2bcf
275 0x038e8fdb ©x211d33e9 x3daSOff3 Ox7e2cedaa Ox73b7d8be
e e 280 Ox614a7edd Ox63133eff @x20bb33ac Ox10845f28 Ox07as54cl
Uncompressed bytes [41240 285 Ox1e9ad541 0x10777428 0x568114f4 Ox36ae905a 0x3df7318b
Compression type [None 290 0x0f9a3b72 @x34dc65f3 @x6f7fc32b Ox34dbdcb4 Ox6f1558df
S e 295 0x6dab37f3 0x8e023989 Ox1867d98d Ox15b8dSc2 @x7cadeadd
ses rietecl oo 300 0x072af9c6 @x415d9ded @x7dd7fS78 0x4495586c Ox12b4ca39
egA 305 @x544f35a5 0x696e353c 0x42c7d481 0x32851333 0x70f7ac8b
User register 2 BXO 310 @x@ccddc7a 0x89a62ced 0x50911b0a 0x4796e472 0x61952¢7f
315 0x4150a985 @x3342cal2 @xS4fec22f 0x44b300% @xbeecOclc S

There are occasions when one wants to examine the raw bytes in a file. This tool
will allow one to do just that. It is capable of viewing any file’s data, although it's
designed specifically to look at evio versions 4 and 6 format data.

Each cell of the table contains 32 bits worth of data displayed in hex. Data can be
switched between big and little endian under the “File” menu. The table contains
up to 1GB worth of data at one time. For larger files, the next or previous 1GB
are loaded when required while scanning through it. On the immediate right of
the data is a slider which indicates where the current view is in relation to the part
of the file that is currently memory mapped (up to 1GB). On the far right is a color
key to highlighted cells.

The figure above is showing an evio 6 format file. All such files have a file header
shown in blue. The light blue is the main header of 14 words. Although there is
no index in this case, there is a dictionary which is stored in the file header’s so-
called user header. This is seen highlighted in dark blue. In the “File Info” box on
the top left, all values in the file header appear in a table.

When searching for record headers, each one shows up highlighted in green.
The light green is the main header of 14 words. The mandatory index of events
shows up in medium green. Although not seen above, since it isn’t used in evio,
any associated user header is shown in dark green. When a record header is
found, it's data is shown in the “Record Info” box on the left.

When searching for events, the first 2 words of each are highlighted in cyan.
When an event is found, it's data is shown in the “Event Info” box on the left (not
seen in the figure above).

2.1 Searching

In order to facilitate finding the data of interest, there are a number of different
ways to hunt through it. The control panel on the left has “Search By” radio
buttons allowing one to select whether to search by:

Looking for a given value

Jumping to a given position in the file

Scrolling page by page or by blocks of 40 pages
Jumping from one evio record/block header to the next
Jumping from one evio event to the next

Scanning the whole file for evio faults or errors

ok wNE

2.1.1 By Value

Look for a given value by selecting the “Word Value” radio button, typing the
value into the “Search For” widget, and then hit the forward or backward search
button under “Search Controls”. The “Stop” button will be activated since
searching a large file (say 20GB) may take extended time. If a search is stopped,

the view position stays where it was when the search was started. If stopped,
starting another search starts from the same location. A progress bar is there to
estimate how much of the file has been searched.

When a value is found, it is highlighted in gold. Hit the search button again to find
the next or previous value. Highlights can be cleared under the “File” menu.

2.1.2 By Location

Look at a given location in the file by selecting the “Word Position” button, typing
the position into the “Search For” widget, and then hitting the “Go” button. The
view jumps to the given location and the value is selected (but not highlighted).
The first position starts at 1, not 0. You can read the position from the table by
taking the number in the far left column and adding the number of the heading at
the very top of the column.

2.1.3 By Page

The “Page Scrolling” button activates the “<” and “>” buttons which hop through
the file page (or view) by page. It also actives the “<<” and “>>" buttons
immediately underneath which move through the file in 40 pages at a click.

2.1.4 By Evio Record/Block Header

For evio version 4 files: look for an evio format block header by selecting the
“Evio Block” button. The program first looks for the magic # (0xc0da0100) of an
evio block header. If found, it checks that the header length is 8 words. If so, it
highlights all 8 words in green. All the information contained in that header is also
displayed on the left in a panel called “Block Info.

For evio version 6 files: look for an evio format block header by selecting the
“Evio Record” button. The program first looks for the magic # (0xc0da0100) of an
evio record header. If found, it checks that the header length is 14 words. If so, it
highlights all 14 words in light green. It highlights the index part of the header in
medium green, and the user header part in the darkest green. All the information
contained in that header is also displayed on the left in a panel called “Record
Info” which can be seen in the figure above.

2.1.5 By Evio Event

Look for an evio event (top level evio bank) by selecting the “Evio Event” button.
This is less straightforward than looking for record/block headers since there is
no universal signature to look for. There are two ways to do the search. The first
way is start the search immediately upon loading the file’s data or to first select a
position before any events. Then hit the forward button. It is smart enough to hop
over any file/record/block headers encountered and uses the length found in the
event’s header to be able to find the next one when the forward button is clicked
again. The first two words (or header) of each event found in this way is
highlighted in cyan and the header information is displayed on the left in a panel
called “Event Info” (see figure below).

Event Info
Length {4 |
Tag [0xffdl |
Num [0 |
Type [BANK |
|

|

|

Data type [UINT32
Padding [0
Bank Type |[Prestart event

2.2 Event information panel

The second way to search is to select the known first word of an event with the mouse.
Hit the forward button to find subsequent events. Remember that the word immediately
after a record/block header is the first word of an event. Hint: selecting the first word of
any bank structure (top level or not) will display all of its information

A quick note on the bank type. In CODA online, some tags are reserved for specific
purposes. If a selected event has such a reserved tag, its purpose will be shown as the
“‘Bank Type”.

2.1.6 By Evio Faults

Look for faults or errors in the evio format by selecting the “Evio Fault” button. Simply hit
the “Start Scan” button and this program scans the file from beginning to end (or as far
as it can parse) and lists all blocks containing errors in a panel on the left called “Evio
Errors” (which can be seen in figure 2.3 below).

The algorithm used to find these errors tries to parse as much of the file as possible. For
example, if a block header length does not equal the sum of the lengths of all the events
it contains, then the block header length is assumed for the moment to be correct and
the event lengths in error. It tries to continue by scanning the next block and stops if it
encounters an unrecoverable error or makes it to the end of the file.

Errors that are caught include bad/inconsistent values in a block/event header, wrong
endianness of the displayed data, length of block header not consistent with length of
contained events, and not enough data to read block/event (usually a bad length), and
too large of an event count in a header. The search can go into events themselves to
find lower level evio errors.

For an evio version 6 file, it will find inconsistencies between compression type and
header values of compression word length and uncompressed data length. Any conflict
between the index length and the number of events in a record will be flagged. Of
course, if a file contains compressed data, evio events will not be scanned.

To print out suspicious record numbers or record header sizes, one must set the debug
flag by hand in the scanFileForErrors() method of the EvioScanner(V6).java file.

Each block in which there is a problem is listed as a button. Click one and it hops to the
beginning of that block which will be highlighted in red. Within that block, the “>” and “<”
buttons move from event to event. If an event has an error, it is the last event to be
accessible through the search buttons and will be highlighted in purple. If the event
containing the error has an internal bank or structure with an error, it can also be

accessed through the search buttons and will be highlighted in orange. A corresponding
error message (or messages) is displayed at the top of the gui in red text.

Below, a small file with evio format errors has been scanned. It reveals errors in 2
records. The first record is selected showing, in red, a header with an uncompressed
data length of 0 even though there is no compression. It also shows the header saying it
contains 3 events but there are entries in the index for only 2. Finally, it found an error in
the first event, signified by its header in purple. The error is in a sub-structure,
highlighted in orange. In this case a little investigation shows that the second bank
header word shows padding of 2 for a data type of 32 bit unsigned int, when it should be
0.

Figure 2.3: Error Scanning

‘® [] HandCreatedV6.ev bytes
File

fUsers/timmer/coda/evioDataFiles/HandCreatedV6.ev

Record: no compression, but comp len != 0 or uncomp len wrong; Index bytes (8) != 4%event-count (12); Event #0 has error

Word Position +1 +2 +3 +4 +5 Comments

Color Key
File Info @x4556494f 1 3
File ID [0xA556494F 1‘s’ 2x10000406 axmm:z 0xcOdad100 8xB8070605 onmzazgé File Header File
File type [EVIO_FILE 15 3 11 Header
File split # [1 20 1f Index array
Header words [56 5 0xc0dad100 0x00000000 User header
Record count [3 30 0x00000000 BxBEATOES 0x@4030201 Bx@B8070605 0x04030201
Ind by 16 » Ll . - —Record Normal—
index array bytes 49 0x00000006 0x00918e01 2x00000004 0xe0028102 2x00000001 Head
Evio version [a5 1 1 0x00030103 0x00000002 Heacer
Has dictionary [false 50 2 2 23 2 Index array
Has first event [false :; S - c 0xcadad 100 User header
Has trailer & index [true 65 14 B 19 000000111 o
User header bytes |12 70 @x00000222 @x00009333 0x00000004 9x80018501 2x00010002 -
User register [0x807060504030201] 75 ox0001c701 0x01020304 w
Traller position [348 80 0x05060708 0x09333333 0x00000004 0xB0010101 8x00000005 Event with error
Userint 1 |ox0 s 5 o 2 - Evio struct error
serint 1 10x 90 2x00000000 x00008010 2x30000206 axe0000000 2xc0d20108
Userint 2 [0x0 a5 1] 3
100 " e 5 3 [Event normal]
Bk Mnrd value
Word Value -
Carent selection |
Word Pasition
Page Scrolling
Evio Record
Evio Event
© Evio Fault
Search For-
0xc0da0100 v
Evio Errors
© Block 1
Black 2
Search Controls
< >
Start Scan Stop
Done
Record Inf
Total words [31
Record # |1

Header words (14
Event count [3
Index array bytes |8
Version [6
Has dictionary [false
Is last [false

User header bytes |12
Uncompressed bytes [0
Compression type |None
Compressed words [0
User register 1 [0x0
User register 2 [0x0

	1. Evio Event Viewing
	1.1 Installation
	1.2 Prerequisites
	1.3 Documentation
	1.4 Features

	2. File Data Viewing
	2.1 Searching
	2.1.1 By Value
	2.1.2 By Location
	2.1.3 By Page
	2.1.4 By Evio Record/Block Header
	2.1.5 By Evio Event
	2.1.6 By Evio Faults

