
DECOUPLING CONTROL SYSTEM COMPONENTS USING

ASYNCHRONOUS PUBLISH/SUBSCRIBE MIDDLEWARE*

Elliott Wolin, Carl Timmer, D.Abbott, W. Gu, V. Gyurjyan, G.Heyes, E.Jastrzembski, D.Lawrence,

B. Moffit

Jefferson Lab, Newport News, VA 23606, U.S.A.

Abstract
A speaker at ICALEPCS 2007 advocated the

decoupling of control system components through the use

of asynchronous communications. The cMsg package

from the Jefferson Lab DAQ group implements true

publish/subscribe communications using a narrow

interface that meets most of the requirements outlined in

the talk mentioned earlier. Decoupled or loosely-coupled

communication ensures that changes to one part of a

control system have no effect on other parts of the system.

Asynchronous communication eliminates needless waits

and timeouts. And the flexibility of the subscription space

and the ability to transmit arbitrary information allows

cMsg to be used for virtually any type of control

application, including run control, logging, monitoring,

hardware control, alarm systems, etc. In this paper we

describe how publish/subscribe works, how it differs from

client/server communications, and how asynchronous

publish/subscribe communications allows for decoupling.

We further describe the cMsg package and its narrow API,

how it was designed for simplicity and ease of use, how

we use it in control systems at JLab, and how we integrate

cMsg with EPICS Channel Access.

INTRODUCTION

At ICALEPCS 2007 Stephen Lewis gave a plenary talk

on control system longevity [1] where he advocated

“decoupling” (and “decentralization”) of control system

components. He promoted minimizing the number of

protocols used and deliberately creating an intellectual

“bottleneck” via the use of a single narrow interface to the

underlying communications layer. By “narrow” he meant

an interface that is simple and does not allow for too

much leeway in how it is used, in the sense that different

components could use it in incompatible ways.

In the following we describe the asynchronous

publish/subscribe paradigm, show how it differs from the

client/server paradigm, and how it satisfies Lewis’

requirements. We then describe a particular

implementation, the cMsg package from the JLab DAQ

group. This is followed by a few examples of how we use

cMsg at JLab and how it allows for decoupling in our

control systems. We end with a summary and

conclusions.

ASYNCHRONOUS PUBLISH/SUBSCRIBE

COMMUNICATIONS

The asynchronous publish/subscribe interprocess

communication model or paradigm has been widely used

in industry for decades, and is seeing more widespread

use in the physics community. Note that some

client/server systems are described using the words

“publish” and “subscribe”, but they do not implement a

true publish/subscribe model.

Under a basic version of the asynchronous

publish/subscribe model, message producers “publish”

messages to abstract subjects, which are just arbitrary

strings. Any producer can publish to any subject at any

time, independent what other producers or consumers are

doing. No prior registration of subjects is required, and

subjects can be created dynamically, at will. There is no

connection or “coupling” of a particular subject to a

particular producer process.

This is one of many features which distinguish

publish/subscribe from client/server models, where in the

latter often only one producer/server is allowed to publish

to a particular subject.

Message consumers “subscribe” to subjects, and

wildcards are often supported. Consumers have no

knowledge of the existence of producers and the subjects

they publish to, just as producers have no knowledge of

consumers and the subjects they subscribe to. A

consumer may subscribe to a subject that no producer

ever publishes to, and a producer may publish to a subject

that no consumer ever subscribes to.

Message publishing and subscribing is asynchronous in

that the producer does not block when a message is

published, i.e. it does not have to wait for some consumer

process to receive it. Consumers receive messages via an

asynchronous callback mechanism, usually running in a

separate thread, and do not block when the subscription is

made.

Thus producers publish messages at will in a “publish-

and-forget” mode, and consumers operate in a “subscribe-

and-forget” mode. Note that it is common for a single

process to be both a message producer and consumer.

Also note that all communications are public, which

allows other processes to listen in on communications

between processes in a transparent manner.

This ability to asynchronously publish and subscribe

independent of the existence of other producers and

consumers, and to transparently listen in on

communications between processes, are key to

implementing the decoupling referred to earlier. System

designers can implement basic interprocess

communication between a set of processes, then at a later

date introduce additional producers and consumers that

*Notice: Authored by Jefferson Science Associates LLC under U.S.

DOE Contract No. DE-AC05-06OR23177. The U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce this manuscript for U.S. Government purposes.

implement new functionality, with no disturbance to the

original system.

For example, imagine two processes communicating

within a control system. At a later date a logger process

could be activated that subscribes to the same subjects

used by the two processes and logs all the

communications between them to disk or database, with

no disruption to the original system. This could be done

for archive or debug purposes, or to implement some new

functionality not imagined when the system was

originally designed.

Once again, this ability to add functionality

incrementally, with no disruption to existing systems, is

key to implementing a decoupled system.

THE JLAB CMSG PACKAGE

The JLab cMsg system implements a somewhat more

sophisticated version of the publish/subscribe model

described earlier, and also is a framework for unifying

disparate interprocess communication packages under a

single narrow API. Here we only describe its

publish/subscribe capabilities (for a full description of the

capabilities of the cMsg package see references [2]-[6]).

Instead of just the subject, in the cMsg package a pair

of message fields, subject and type, is used when

publishing messages and subscribing to them. In all other

respects the type field is treated identically to the subject

field.

cMsg messages can hold all common fundamental data

types, arrays of these types, as well as cMsg messages

and arrays of messages. Thus for example a process that

receives many messages could bundle them all up in a

single message and ship them off to an archiver process.

Message routing is performed by high-performance

background server processes (written in pure Java). TCP,

UDP, and multicast are supported. Servers can be

grouped together into “clouds” which implement hot

server failover and least-hop routing. Appropriate

deployment of servers in a cloud can be used to optimize

traffic shaping. Finally the routing space can easily be

broken up into isolated sub-spaces, if desired.

The cMsg API is available in C, C++ and Java, and can

run on many flavours of Linux, Solaris, other flavours of

Unix, and VxWorks (currently only the Java version

works Windows). Endian conversions are handled

automatically except for binary data.

The API is designed to be as simple as possible; no

interface definition languages or stub generators are

needed. A simple C++ program to send or receive a

message takes only a few lines (see ref [2]-[6] for

examples).

The cMsg API is narrow in that basic messaging

functionality is provided, and all other customizations

must be done via conventions in the control system (see

Table 1). That is, there is only one type of message and

one way to fill, publish, subscribe, and receive messages.

The entire underlying transport mechanism could be

replaced or modified transparently, with no modifications

to user code needed. Indeed many aspects of the internals

of the cMsg package have changed over the past five

years (we are now on major version 3), but the API has

hardly changed at all, and programs written five years ago

work fine after recompilation [7].

Table 1. Simplified description of API calls

API Call Description

connect(UDL, name) Connect to cMsg

system specified by

UDL for client “name”

disconnect() Disconnect from cMsg

system

send(msg) Send message

asynchronously

flush(timeout) Flush messages sent

from client

syncSend(msg, timeout) Send message and

wait for server

response

sendAndGet(msg,

timeout)

Send message and

wait for receiving

client to send response

subscribe(subject, type,

callback)

Subscribe to messages

of given subject &

type, registering

callback for incoming

messages

unsubscribe() Remove subscription

subscribeAndGet(subject,

type, timeout)

Subscribe to subject &

type and wait for one

response

start() Start receiving

messages

stop() Stop receiving

messages

monitor(command) Synchronous call to

request monitoring

information

Additional useful synchronous capabilities are provided

for convenience. These could be implemented by users or

developers using only asynchronous cMsg features, but

we found it far simpler to build these capabilities into the

base package. Note that responses to synchronous calls

are private, and that this is the only non-public

communication mechanism in cMsg.

Monitoring capabilities exist to identify all servers in a

broadcast domain, list all clients for each server, how

many messages they have published, which subject/type

combinations they are subscribed to, and how many

messages have been received for each subscription.

The cMsg package is available on the JLab FTP site

[8].

EXAMPLES

The cMsg package is used as a bridge to different or

legacy communication systems, as the foundation of the

JLab DAQ system run control system, for data transport

in low to moderate speed test DAQ systems, to implement

an agent-based experiment control system, to transport

ROOT from event analysis processes to central display

processes, and many other applications. Below we

describe a few of these many applications to illustrate the

power of cMsg and the utility of decoupling.

cMsgCAGateway
Gateways provide bridges from the cMsg world to

different or legacy communication systems. An example

is cross-communication between cMsg and EPICS

Channel Access (CA) via the cMsgCAGateway. Here a

cMsg message sent to the gateway is converted to a CA

put, a synchronous call is used to implement a CA get,

and a subscription request is converted to a CA

monitorOn.

cMsgCommand Utility
The JLab DAQ run control system uses cMsg to

transport commands from a central run control server

system to individual DAQ components. The run control

system relies on XML configuration files to tell it which

components are part of a particular DAQ session. Often it

is useful to test an individual component in isolation

without having to create a special configuration file for

the test.

The cMsgCommand utility creates and publishes a

cMsg message based on command-line arguments. Using

cMsgCommand, at the command line one can simulate

the actions of the full run control server facility, but only

exercise the component under test. In fact, for small

systems one can write short scripts that use the

cMsgCommand utility to control a complete DAQ

system. The essential point is that DAQ components do

not know or care who publishes the commands they

respond to.

cMsgLogger
The cMsgLogger utility can subscribe to an arbitrary

subject/type combination, and when messages are

received it prints summary information to the screen or

file, or stores the messages in a JDBC-accessible

database.

This utility is frequently used for debugging, where it is

set to subscribe to subject “*” and type “*” (i.e. subscribe

to ALL subject/type combinations in the messaging

space), then print out a summary line for each message

received. This allows developers to view and debug all

communications between multiple components.

Logging to a file is used for archiving purposes, or for

debugging a system where the volume of messages is too

large to look at on a screen. Logging to a database has

many uses (see below). Once again the decoupling of

components is key.

cMsgQueue and cMsgFileQueue
Sometimes a message needs to be processed some time

after is published, perhaps because the consumer is busy,

or perhaps because it is not even running at the time the

message is published. In the latter case, in a pure

asynchronous publish/subscribe system, such messages

would never get processed. This can be addressed

through the use of persistent message queues.

The cMsgQueue and cMsgFileQueue programs provide

a temporary message storage mechanism implemented via

a database or file-based FIFO or queue. They subscribe to

a user-specified subject/type combination and then store

all messages received in the queue system. At a later time

message consumers can send a special synchronous

request message to the queue process, which then

removes the message from the queue and sends it to the

requester.

Any number of queue message consumers can be run

simultaneously since they cannot interfere with each

other, another benefit of decoupling in the message

system.

daLogMsg Browser
Prototype versions of JLab DAQ components printed

error, warning and info messages to the screen, the idea

being that we would implement a network-based system

at a later date. When the time came we simply replaced

the print statements with calls to a daLogMsg() method

that just placed the components of the print statement into

a message and published it to a standard subject/type.

After publication the messages could be logged and

displayed by the cMsgLogger, but we soon created a

graphical utility that implemented more functionality. In

particular, operators needed the ability to filter and sort

messages rather than just see all messages in simple time

order.

The daLogMsg browser utility subscribes to the special

daLogMsg subject/type, then stores received messages in

a large circular buffer. Operators can filter messages on

various message fields (e.g. severity must be WARN or

greater), select messages only from particular producers,

and scroll back and forth through the circular buffer. The

browser can additionally display timeline plots of numeric

fields in the messages (see Fig 1).

A future version will allow browsing backwards in time

via scanning of a database of messages stored by the

cMsgLogger utility.

Figure 1: daLogMsg browser display showing list of message senders (upper left), contents of messages received (upper

middle), information about messages received (lower middle), histogram of message contents (bottom left) and timeline

of message contents (lower right).

RootSpy
Farm-based monitoring and analysis programs often

run for long periods of time and use considerable

resources. It is extremely useful to be able to monitor the

progress of these processes in real-time. In a monitoring

situation one might learn that some hardware component

is not working properly. In an analysis situation one

might learn there is a serious bug in the latest version of

the code, and thus want to stop everything before more

valuable resources are wasted.

Many of these programs use the CERN ROOT facility

to create histograms during the processing. We use the

cMsg package to transport ROOT histograms from the

farm processes to display GUI’s. This was implemented

as follows.

A separate thread is run in the analysis process that has

access to the ROOT object directories and subscribes to a

particular ROOTSPY subject/type. When a “server poll”

message is received it responds with assorted identifying

information. When a “histogram directory” request is

received it responds with a list of all ROOT histograms in

its memory. When a “histogram” request message arrives

it responds with a message containing a serialized version

of a ROOT histogram object, serialized using the

TMessage class. This thread runs in parallel with the

analysis threads, and since there is no interaction between

them, no changes were needed to the analysis program to

accommodate the new thread.

When the graphical histogram display program starts it

publishes a histogram status poll request message to a

standard subject/type to determine what histogram server

processes exist. Servers respond via publishing a

response to another standard subject/type. Based on the

responses (received via a subscription callback) the

display utility sends histogram directory requests to

selected servers. These respond with their list of

histograms, and a graphical directory of available

histograms is presented to the user (see Fig. 2).

The user chooses which histograms they are interested

in and the display program sends requests out for the

chosen histograms. The display program then deserializes

the ROOT histogram objects contained in the messages

when they arrive, and displays the histograms. Note that

many independent ROOTSPY display programs can run

at the same time.

Once again decoupling allowed us to add the histogram

server thread to all analysis programs with no change to

the analysis code, and it allows for running multiple

independent instances of the ROOTSPY program.

SUMMARY AND CONCLUSIONS

The asynchronous publish/subscribe model is ideal for

implementing a decoupled interprocess communication

system. Producers can publish messages to abstract

subjects with no regard for the activities of other

producers or the existence of any message consumers.

Consumers can subscribe to subjects with no regard for

the activities of other consumers, or to the producers that

publish to those subjects. New consumers can be added to

implement additional functionality with no change needed

to the existing system.

The cMsg package implements a narrow interface that

has barely changed over the past five years. It provides

basic messaging functionality, and all additional

customization is done by developers via conventions in

the control system. The result is a very flexible system

that remains stable for long periods of time.

In use, we have often created simple systems to

implement some basic functionality, then added new

functionality via new processes that listen in on the

existing messaging and perform new tasks (e.g. archiving

or display), with no change to the original system needed.

In this way functionality can be built up incrementally

and transparently, and modified as needed with no effect

on existing systems.

REFERENCES

[1] S. Lewis, “Elements of Control System Longevity,”

Proceedings of ICALEPCS 2007, Knoxville, TN,

U.S.A.

[2] ????

[3] ????

[4] IEEE Real Time 2006.

[5] CHEP 2007.

[6] PCaPAC 2008.

[7] We recall only one API change, breaking up of a

complex call that requested a no-copy transmission

of a binary array into two simpler and more natural

calls.

[8] ftp://ftp.jlab.org/pub/coda/cMsg.

Figure 2: Histogram selection box from ROOTSPY

graphical histogram display utility. Shown are lists of

histograms provided by histogram server processes.

User chooses which histograms to display.

