

Abstract— Jefferson Lab produces large amounts of data, up

to 22 MB/sec. We developed a software package designed to

manage and distribute all of this data as it is being produced - in

real time. Called the Event Transfer (ET) system, it allows users

to create data (events) and insert them into the system as well as

allow other users to retrieve these events sequentially. The ET

system has fast, local operation based on shared memory and

POSIX threads and mutexes. Event transfer may also occur over

the network to remote users. The ET system is designed to be easy

to use as well as very robust. Although initially implemented in C

on Solaris and Linux platforms, we completed a recent port to

Java. This paper presents a description of this software package

as well as some performance measurements.

I. INTRODUCTION

he Thomas Jefferson National Accelerator Facility

(Jefferson Lab) is a U.S. Department of Energy, nuclear

physics research laboratory employing a 6 GeV electron

accelerator . Of the various detectors used at our facility, the

CEBAF Large Angle Spectrometer (CLAS) in experimental

Hall B is the one whose operation currently places the highest

demand on the data acquisition (DAQ) system. With over

40,000 channels and 30 FASTBUS/VME crates, a data rate of

up to 22 MB/sec is possible. In the future, experiments in the

proposed Hall D will produce an estimated 1000 MB/sec raw

data rate and 100 MB/sec to tape. Hall D’s raw data will have

to be handled in several parallel streams.

To handle these data, the CODA data acquisition toolkit [1],

[2] has been developed to run on Solaris and Linux systems.

Briefly, CODA is composed of software components that

communicate via the network and with a common database.

The first of the four main CODA components is the readout

controller (ROC) which runs in embedded controllers in

FASTBUS or VME crates collecting raw data. ROCs send

their data to the second component, the event builder (EB),

which constructs complete events out of these data fragments.

The EB, in turn, passes complete events to the event recorder

(ER) which writes them to tape.

The Event Transfer (ET) system is responsible for passing

these events between the EB and ER. The system is also used

to pass the data to other users who may, for example, wish to

monitor the data quality or do some physics analysis. In fact,

the ET system is a general software package, which may just

as easily be used independently of CODA. The PHENIX

experiment at BNL’s Relativistic Heavy Ion Collider as well

as the MIT Bates accelerator also use the ET system to do their

data transfer.

Manuscript received May 25, 2001. This work was supported by the U.S.

Department of Energy.

II. ET SYSTEM DESIGN

Software for the transfer of data is such a basic and

important building block for Jefferson Lab's DAQ system, it

had to meet some stringent requirements. Namely, it had to be

fast enough not to be a bottle-neck, extremely reliable, flexible,

and physicist-friendly.

We achieved our speed requirements through a number of

means. The POSIX thread (IEEE Std. 1003.1) library, also

known as “Pthreads”, was used to make the ET system a

completely multithreaded, single Unix process. This allowed

us to take full advantage of multi-processor computers.

Currently CLAS runs their ET system on a Sun 3500 with 6

processors with excellent results. Another means was to use

shared memory when transferring events between users on the

same machine. Access to this shared memory is arbitrated by

use of Pthread mutexes and condition variables, which are

generally implemented in the users' memory space as opposed

to the kernel and are therefore faster than SYS V semaphores.

A reliable system requires constant monitoring of users by

the ET system and monitoring of the system by users. The ET

system process and all users have a thread which provides a

heartbeat and a second thread which monitors all other

heartbeats. In this way, each can tell when the other has

crashed or disappeared for some reason. A user is capable of

waiting for the return of the ET system and continuing where

it left off. The ET system, on the other hand, can recover the

events that a crashed user was holding, place them where the

user specifies, and continue on.

Flexibility and ease-of-use is due in part to making the ET

system software completely reentrant, meaning that multiple

copies may run on a single machine at the same time. No Unix

environmental variables or static variables are used,

eliminating a whole class of problems. In addition, because the

ET library is thread-safe, there are no worries about the details

of thread usage. Finally, users on remote nodes may receive

events over the network with no change in their code.

III. ET SYSTEM IMPLEMENTATION

Fig. 1 gives a general overview of the ET system. To start,

empty data buffers are created in shared memory. In our case,

these buffers are filled with event data and so we refer to these

buffers as “events” for short. Arrows in the figure show the

flow of events (actually pointers to events) through the system.

The basic idea behind the flow is to have an ordered series of

event repositories called "stations”. Each station is primarily

composed of two lists sitting in shared memory. The “input

All authors are with the Thomas Jefferson National Accelerator Facility,

12000 Jefferson Ave., Newport News, 23606, USA (telephone 757-269-5130,

e-mail: timmer @jlab.org).

Data Distribution Manager

C. Timmer, D. J. Abbott, V. H. Gyurjyan, W. G. Heyes, E. Jastrzembski, and E. Wolin

T

list” contains events available for use, and the “outut list”

contains events users are finished with. The first station, called

GrandCentral, is a special repository with all the unused events

available to users to fill with data and put back into the system.

Users that create these new events we call producers. Once

produced, events are placed by the ET system process in other

stations "downstream." Users wanting to read or modify the

previously created events we call consumers and may "attach"

themselves to stations downstream from GrandCentral where

they can get and put these events as they please. Again, the ET

system process moves the used events to the next station

downstream. Once events reach the last station, they are

recycled back to GrandCentral.

 This flow of events is accomplished by multithreading the

ET system process. Each station has its own event transfer

thread, or “conductor”, which is waiting for output events.

When events are "put" by the user, the conductor wakes up and

reads all events in the output list, determines which events go

where, and writes them in blocks to each station's input list. A

key optimization in the transferring of events from station to

user and vice versa is to transfer a whole array at once. This

reduces contention for mutexes in proportion to the number of

events in the array and can result in the increase of speed by

over an order of magnitude.

The use of threads has made complete error recovery

possible. ET system and user processes each have a heartbeat

thread which increments an integer in shared memory.

Simultaneously, in other threads, the system monitors each

user and each user monitors the system. If the system dies,

users automatically return from any function calls that are

currently pending. They can determine if the system is still

alive, and can wait for the system’s return. If a user's heartbeat

stops, the system removes any trace of that process from the

system while all events tied up by the dead process are returned

to the system. These events can be placed in either: 1) the

station's input list, 2) the station's output list, or 3)

GrandCentral station (recycling them).

It is possible for multiple consumers to attach to a single

station. In this case, each consumer receives only a fraction of

the total flow of events through the station. One advantage of

this configuration is that fewer stations means events flow

through the system faster. Another advantage is that several

identical consumers can operate simultaneously.

As for the actual events themselves, there are a number of

ways to determine which are accepted into a station’s input list.

Each event has an associated header containing integers whose

values may be set, effectively tagging them. Stations may

choose to select events based on those tags using either a

default algorithm or a user supplied routine. It is also possible

to prescale so that every Nth event is chosen. Another means

is to make a station "blocking" in which case it receives all

events that match its selection criteria or "nonblocking" in

which case it receives events only until its cue is full, at which

time other events flow around it.

Occasionally, a user will need an event to hold a large

amount of data - larger than the fixed space allocated for each

event when the ET system was started and the event size was

determined. In such cases, a request for a large event will cause

a file to be memory mapped with all the requested space. When

all users are done with it, this temporary event will be disposed

of and its memory freed. This is all transparent to the user.

Events can be either high or low priority. High priority

events that are placed into the system are always placed at the

head of stations' input and output lists. That is, they are placed

below other high priority, but above all the low priority items.

Part of the ET system’s flexibility is its remote capabilities.

Users can interact with ET systems over the network since

each system has two threads dedicated to that purpose. One

thread responds to the UDP broadcasts of remote consumers

trying to find an ET system of a particular name somewhere

on the network. The response simply sends back the port

number of the socket that the second thread is listening on. The

second thread, meanwhile, is the listening on a socket as part

of a TCP server. That server, in turn, creates other threads

which establish connections with consumers and handle

general and event I/O with them.

Currently, the Linux kernel does not allow the sharing of

Pthread mutexes and condition variables between processes.

This makes it impossible to access the shared memory of the

ET system safely between processes. However, this problem

can be circumvented by treating local Linux producers and

consumers as though they are remote. Thus it is the ET

system’s network capability that makes it possible to run on

Linux (Redhat 6.0 and later). The server built into the ET

system handles all ET routines that require handling these

mutexes and send users pointers to events that can then be used

to access events in shared memory. This makes ET systems on

Linux somewhat slower than those on Solaris.

IV. ET SYSTEM ON JAVA

Although the words “Java” and “real time” are seldom

spoken together, the performance of a Java-based ET (JET)

system does not differ that markedly from that of a C-based ET

system operating over the network. Since Java has no shared

memory, an ET system running on it uses sockets for all

communication. JET was initially implemented to be part of a

slow controls system acting as a distributor of control

information. It is currently being considered, however, to

handle some of the CLAS experiment’s main flow of data,

because of the existence of data analysis software in Java. JET

has only been used with Java version 1.3 from Sun, leaving

open the possibility of performance increases through the use

of Java compilers.

One benefit from having JET is the relative ease of

implementing GUI’s on Java. For example, creating a

graphical ET system monitor was done quite easily using

Java’s built-in graphics and widgets available on the internet.

V. ET SYSTEM PERFORMANCE

Measurements of the ET system’s speed in the handling of

events can be seen in Fig. 2. We ran tests on both a 4 cpu,

250MHz Sparc UltraII Sun workstation running Solaris and on

a 2 cpu, 450MHz Xeon PC running Linux. The conditions of

the test were that the ET system had 3000 total events while a

producer copied the event size amount of data into each event.

A consumer created and attached to a blocking station so as to

get and then put all events, but no manipulation of the data was

done. The point was to simulate a bare-bones user application.

Notice that at the event size used in CLAS (5kB), the ET

system can transfer about 200 MB/sec on the Sun and 160

MB/sec on the PC. That rate is limited primarily by the speed

of copying data into the events. As the event size drops below

512 bytes, the inefficiencies of Linux mutex handling become

apparent while Solaris does much better with these small

events. Operating with the ET system connected to a consumer

over 100 Mbit ethernet shows a rate of over 11 MB/sec,

meaning that most of the available bandwidth is used. The Java

ET system, at over 15MB/sec, does well in comparison to a

true network-based consumer.

How the ET system holds up under multiple users can be

seen in Fig. 3. Solid symbols denote consumers reading and

writing events from a single station, while open symbols

indicate performance when each consumer is attached to a

different station. The conditions of the test were that the ET

system had 3000 total events while a single producer was

running. Stations were made to accept every event with each

consumer’s read and write containing 100 events. No copying

or manipulation of data was done so as to clearly see the speed

of the event handling itself.

As can be seen, with just a single consumer, an event rate of

550KHz is possible on the Sun, and a rate of 150KHz is

possible on the PC. These numbers are somewhat arbitrary as

the rate can be increased or decreased depending on how many

events are written or read at one time. The large difference in

the rates is due in part to the limitations Linux has in sharing

mutexes between processes and the greater efficiency of mutex

handling on Solaris. Notice also that when consumers all share

the same station, the ET system operates much faster. This is

because with fewer stations, the events travel through fewer

conductors and have less ET system handling overhead.

Though JET performs well below C-based ET systems,

when only one station is used for all consumers, the event rate

actually stays at a very constant 25kHz. In fact, it performs at

the same rate as a C-based system with 8 different stations and

consumers.

The results of these tests, while accurate, do not reflect the

conditions most users will impose on the system. Users of ET

systems do more than just get and put events. Typically some

analysis of the event data is done. When cpu intensive

programs are figured into the mix, it is their speed and

efficiency that determines at what rate the events flow through

the system. In most cases, the overhead of the ET event

handling is not the bottleneck.

One way to improve the efficiency of the ET system can be

seen in Fig. 4. By simply transferring (getting or putting) an

array of events at a time, instead of one-by-one, the

performance can be boosted. At roughly 100 events per

transfer most of the performance gains on Solaris have been

achieved, while the Linux data suggest continued

improvements with larger numbers of events per transfer.

VI. CONCLUSIONS

The ET system at Jefferson Lab has been running

successfully for over 2 years. It is extremely reliable, is simple

enough for inexperienced programmers to use, and meets all

the demands placed on it at Jefferson Lab. Significantly, the

bottleneck on the event rate due to the previous data

distribution system has been removed, allowing rates currently

limited only by front end hardware.

Future challenges facing the ET system will require

handling the 1000MB/sec raw data rate of the proposed Hall D

experiment. More immediate is the challenge of incorporating

JET systems into the next generation of slow controls and data

flow management.

VII. REFERENCES

[1] G. W. Heyes, et al., "The CEBAF On-line Data Acquisition System,"

Proceedings of the 1994 CHEP Conference, pp. 122-126, Apr. 1994.

[2] D. J. Abbott, W. G. Heyes, E. Jastrzembski, R. W. MacLeod, C. Timmer,

E. Wolin, "CODA Performance in the Real World," Proceedings of the
1999 IEEE Real Time Conference, pp. 119-122, June 1999.

Fig. 1. The ET system architecture and event flow.

Fig. 2. The speed of the ET system in handling events is given as a function

of the event size in bytes. Dotted lines mark fixed data transfer rates.

Input
List

Output
List

Station 1

Input
List

Output
List

Station N

Input
List

Output
List

GrandCentral
Station

Shared
Memory

Consumer 1

Heartbeat
Thread

Heart Monitor
Thread

Add Station
Thread

UDP Receive
Threads

TCP Server
Thread

TCP Client
Threads

Conductor
Thread

Conductor
Thread

Conductor
Thread

ET S ystem Process

User Processes

Producer

Heartbeat
Thread

Heart Monitor
Thread

Consumer

Heartbeat
Thread

Heart Monitor
Thread

Consumer 2

Consumer N

Event Flow

0 2000 4000 6000 8000

Event Size (bytes)

600

1

10

100

E
v
e

n
t

R
a

te
 (

k
H

z
)

Sun Solaris, 4x250MHz
x86 Linux, 2x450MHz
ET over 100Mbit ethernet
Sun Solaris, Java ET

10 Mb/s

20 Mb/s

40 Mb/s

80 Mb/s

160 Mb/s

320 Mb/s

Fig. 3. The speed of the ET system as a function of the number of

consumers. The performance for each platform is shown using the same station

for all consumers and using a different station for each consumer.

Fig. 4. The speed of the ET system as a function of the number of events

in one transfer (one get or put call).

0 2 4 6 8

Number of Consumers

10

100

1000

E
v
e

n
t

R
a

te
 (

k
H

z
)

Sun Solaris

x86 Linux

Sun Solaris Java

same station

different stations

same

different

same
different

0 100 200 300 400 500

Events per Transfer

0

100

200

300

400

500

600

700

E
v
e

n
t

R
a

te
 (

k
H

z
)

Sun Solaris, 4x250MHz
x86 Linux, 2x450MHz

Sun Solaris, Java ET

	I. INTRODUCTION
	II. ET System Design
	III. ET System Implementation
	IV. ET System on Java
	V. ET System Performance
	VI. Conclusions
	VII. References

