
      

Abstract— Jefferson Lab produces large amounts of data, up 

to 22 MB/sec. We developed a software package designed to 

manage and distribute all of this data as it is being produced - in 

real time. Called the Event Transfer (ET) system, it allows users 

to create data (events) and insert them into the system as well as 

allow other users to retrieve these events sequentially. The ET 

system has fast, local operation based on shared memory and 

POSIX threads and mutexes.  Event transfer may also occur over 

the network to remote users. The ET system is designed to be easy 

to use as well as very robust. Although initially implemented in C 

on Solaris and Linux platforms, we completed a recent port to 

Java.  This paper presents a description of this software package 

as well as some performance measurements. 

I. INTRODUCTION 

he Thomas Jefferson National Accelerator Facility 

(Jefferson Lab) is a U.S. Department of Energy, nuclear 

physics research laboratory employing a 6 GeV electron 

accelerator . Of the various detectors used at our facility, the 

CEBAF Large Angle Spectrometer (CLAS) in experimental 

Hall B is the one whose operation currently places the highest 

demand on the data acquisition (DAQ) system. With over 

40,000 channels and 30 FASTBUS/VME crates, a data rate of 

up to 22 MB/sec is possible. In the future, experiments in the 

proposed Hall D will produce an estimated 1000 MB/sec raw 

data rate and 100 MB/sec to tape. Hall D’s raw data will have 

to be handled in several parallel streams.  

To handle these data, the CODA data acquisition toolkit [1], 

[2] has been developed to run on Solaris and Linux systems. 

Briefly, CODA is composed of software components that 

communicate via the network and with a common database. 

The first of the four main CODA components is the readout 

controller (ROC) which runs in embedded controllers in 

FASTBUS or VME crates collecting raw data. ROCs send 

their data to the second component, the event builder (EB), 

which constructs complete events out of these data fragments. 

The EB, in turn, passes complete events to the event recorder 

(ER) which writes them to tape. 

The Event Transfer (ET) system is responsible for passing 

these events between the EB and ER. The system is also used 

to pass the data to other users who may, for example, wish to 

monitor the data quality or do some physics analysis. In fact, 

the ET system is a general software package, which may just 

as easily be used independently of CODA. The PHENIX 

experiment at BNL’s Relativistic Heavy Ion Collider as well 

as the MIT Bates accelerator also use the ET system to do their 

data transfer. 
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II. ET SYSTEM DESIGN 

Software for the transfer of data is such a basic and 

important building block for Jefferson Lab's DAQ system, it 

had to meet some stringent requirements. Namely, it had to be 

fast enough not to be a bottle-neck, extremely reliable, flexible, 

and physicist-friendly.  

We achieved our speed requirements through a number of 

means. The POSIX thread (IEEE Std. 1003.1) library, also 

known as “Pthreads”, was used to make the ET system a 

completely multithreaded, single Unix process. This allowed 

us to take full advantage of multi-processor computers. 

Currently CLAS runs their ET system on a Sun 3500 with 6 

processors with excellent results. Another means was to use 

shared memory when transferring events between users on the 

same machine. Access to this shared memory is arbitrated by 

use of Pthread mutexes and condition variables, which are 

generally implemented in the users' memory space as opposed 

to the kernel and are therefore faster than SYS V semaphores. 

A reliable system requires constant monitoring of users by 

the ET system and monitoring of the system by users. The ET 

system process and all users have a thread which provides a 

heartbeat and a second thread which monitors all other 

heartbeats. In this way, each can tell when the other has 

crashed or disappeared for some reason. A user is capable of 

waiting for the return of the ET system and continuing where 

it left off. The ET system, on the other hand, can recover the 

events that a crashed user was holding, place them where the 

user specifies, and continue on. 

Flexibility and ease-of-use is due in part to making the ET 

system software completely reentrant, meaning that multiple 

copies may run on a single machine at the same time. No Unix 

environmental variables or static variables are used, 

eliminating a whole class of problems. In addition, because the 

ET library is thread-safe, there are no worries about the details 

of thread usage. Finally, users on remote nodes may receive 

events over the network with no change in their code. 

III. ET SYSTEM IMPLEMENTATION 

Fig. 1 gives a general overview of the ET system. To start, 

empty data buffers are created in shared memory. In our case, 

these buffers are filled with event data and so we refer to these 

buffers as “events” for short. Arrows in the figure show the 

flow of events (actually pointers to events) through the system. 

The basic idea behind the flow is to have an ordered series of 

event repositories called "stations”. Each station is primarily 

composed of two lists sitting in shared memory. The “input 
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list” contains events available for use, and the “outut list” 

contains events users are finished with. The first station, called 

GrandCentral, is a special repository with all the unused events 

available to users to fill with data and put back into the system. 

Users that create these new events we call producers. Once 

produced, events are placed by the ET system process in other 

stations "downstream." Users wanting to read or modify the 

previously created events we call consumers and may "attach" 

themselves to stations downstream from GrandCentral where 

they can get and put these events as they please. Again, the ET 

system process moves the used events to the next station 

downstream. Once events reach the last station, they are 

recycled back to GrandCentral. 

 This flow of events is accomplished by multithreading the 

ET system process. Each station has its own event transfer 

thread, or “conductor”, which is waiting for output events. 

When events are "put" by the user, the conductor wakes up and 

reads all events in the output list, determines which events go 

where, and writes them in blocks to each station's input list. A 

key optimization in the transferring of events from station to 

user and vice versa is to transfer a whole array at once. This 

reduces contention for mutexes in proportion to the number of 

events in the array and can result in the increase of speed by 

over an order of magnitude. 

The use of threads has made complete error recovery 

possible. ET system and user processes each have a heartbeat 

thread which increments an integer in shared memory. 

Simultaneously, in other threads, the system monitors each 

user and each user monitors the system. If the system dies, 

users automatically return from any function calls that are 

currently pending. They can determine if the system is still 

alive, and can wait for the system’s return. If a user's heartbeat 

stops, the system removes any trace of that process from the 

system while all events tied up by the dead process are returned 

to the system. These events can be placed in either: 1) the 

station's input list, 2) the station's output list, or 3) 

GrandCentral station (recycling them). 

It is possible for multiple consumers to attach to a single 

station. In this case, each consumer receives only a fraction of 

the total flow of events through the station. One advantage of 

this configuration is that fewer stations means events flow 

through the system faster. Another advantage is that several 

identical consumers can operate simultaneously. 

As for the actual events themselves, there are a number of 

ways to determine which are accepted into a station’s input list. 

Each event has an associated header containing integers whose 

values may be set, effectively tagging them. Stations may 

choose to select events based on those tags using either a 

default algorithm or a user supplied routine. It is also possible 

to prescale so that every Nth event is chosen. Another means 

is to make a station "blocking" in which case it receives all 

events that match its selection criteria or "nonblocking" in 

which case it receives events only until its cue is full, at which 

time other events flow around it. 

Occasionally, a user will need an event to hold a large 

amount of data - larger than the fixed space allocated for each 

event when the ET system was started and the event size was 

determined. In such cases, a request for a large event will cause 

a file to be memory mapped with all the requested space. When 

all users are done with it, this temporary event will be disposed 

of and its memory freed. This is all transparent to the user. 

Events can be either high or low priority. High priority 

events that are placed into the system are always placed at the 

head of stations' input and output lists. That is, they are placed 

below other high priority, but above all the low priority items. 

Part of the ET system’s flexibility is its remote capabilities. 

Users can interact with ET systems over the network since 

each system has two threads dedicated to that purpose. One 

thread responds to the UDP broadcasts of remote consumers 

trying to find an ET system of a particular name somewhere 

on the network. The response simply sends back the port 

number of the socket that the second thread is listening on. The 

second thread, meanwhile, is the listening on a socket as part 

of a TCP server. That server, in turn, creates other threads 

which establish connections with consumers and handle 

general and event I/O with them. 

Currently, the Linux kernel does not allow the sharing of 

Pthread mutexes and condition variables between processes. 

This makes it impossible to access the shared memory of the 

ET system safely between processes. However, this problem 

can be circumvented by treating local Linux producers and 

consumers as though they are remote. Thus it is the ET 

system’s network capability that makes it possible to run on 

Linux (Redhat 6.0 and later). The server built into the ET 

system handles all ET routines that require handling these 

mutexes and send users pointers to events that can then be used 

to access events in shared memory. This makes ET systems on 

Linux somewhat slower than those on Solaris. 

IV. ET SYSTEM ON JAVA 

Although the words “Java” and “real time” are seldom 

spoken together, the performance of a Java-based ET (JET) 

system does not differ that markedly from that of a C-based ET 

system operating over the network. Since Java has no shared 

memory, an ET system running on it uses sockets for all 

communication.  JET was initially implemented to be part of a 

slow controls system acting as a distributor of control 

information. It is currently being considered, however, to 

handle some of the CLAS experiment’s main flow of data, 

because of the existence of data analysis software in Java. JET 

has only been used with Java version 1.3 from Sun, leaving 

open the possibility of performance increases through the use 

of Java compilers. 

One benefit from having JET is the relative ease of 

implementing GUI’s on Java. For example, creating a 

graphical ET system monitor was done quite easily using 

Java’s built-in graphics and widgets available on the internet. 

V. ET SYSTEM PERFORMANCE 

Measurements of the ET system’s speed in the handling of 

events can be seen in Fig. 2. We ran tests on both a 4 cpu, 

250MHz Sparc UltraII Sun workstation running Solaris and on 

a 2 cpu, 450MHz Xeon PC running Linux. The conditions of 

the test were that the ET system had 3000 total events while a 

producer copied the event size amount of data into each event. 

A consumer created and attached to a blocking station so as to 



 

 

get and then put all events, but no manipulation of the data was 

done. The point was to simulate a bare-bones user application. 

Notice that at the event size used in CLAS (5kB), the ET 

system can transfer about 200 MB/sec on the Sun and 160 

MB/sec on the PC. That rate is limited primarily by the speed 

of copying data into the events. As the event size drops below 

512 bytes, the inefficiencies of Linux mutex handling become 

apparent while Solaris does much better with these small 

events. Operating with the ET system connected to a consumer 

over 100 Mbit ethernet shows a rate of over 11 MB/sec, 

meaning that most of the available bandwidth is used. The Java 

ET system, at over 15MB/sec, does well in comparison to a 

true network-based consumer. 

How the ET system holds up under multiple users can be 

seen in Fig. 3. Solid symbols denote consumers reading and 

writing events from a single station, while open symbols 

indicate performance when each consumer is attached to a 

different station. The conditions of the test were that the ET 

system had 3000 total events while a single producer was 

running. Stations were made to accept every event with each 

consumer’s read and write containing 100 events. No copying 

or manipulation of data was done so as to clearly see the speed 

of the event handling itself. 

As can be seen, with just a single consumer, an event rate of 

550KHz is possible on the Sun, and a rate of 150KHz is 

possible on the PC. These numbers are somewhat arbitrary as 

the rate can be increased or decreased depending on how many 

events are written or read at one time. The large difference in 

the rates is due in part to the limitations Linux has in sharing 

mutexes between processes and the greater efficiency of mutex 

handling on Solaris. Notice also that when consumers all share 

the same station, the ET system operates much faster. This is 

because with fewer stations, the events travel through fewer 

conductors and have less ET system handling overhead. 

Though JET performs well below C-based ET systems, 

when only one station is used for all consumers, the event rate 

actually stays at a very constant 25kHz. In fact, it performs at 

the same rate as a C-based system with 8 different stations and 

consumers. 

The results of these tests, while accurate, do not reflect the 

conditions most users will impose on the system. Users of ET 

systems do more than just get and put events. Typically some 

analysis of the event data is done. When cpu intensive 

programs are figured into the mix, it is their speed and 

efficiency that determines at what rate the events flow through 

the system. In most cases, the overhead of the ET event 

handling is not the bottleneck. 

One way to improve the efficiency of the ET system can be 

seen in Fig. 4. By simply transferring (getting or putting) an 

array of events at a time, instead of one-by-one, the 

performance can be boosted.  At roughly 100 events per 

transfer most of the performance gains on Solaris have been 

achieved, while the Linux data suggest continued 

improvements with larger numbers of events per transfer. 

VI. CONCLUSIONS 

The ET system at Jefferson Lab has been running 

successfully for over 2 years. It is extremely reliable, is simple 

enough for inexperienced programmers to use, and meets all 

the demands placed on it at Jefferson Lab. Significantly, the 

bottleneck on the event rate due to the previous data 

distribution system has been removed, allowing rates currently 

limited only by front end hardware. 

Future challenges facing the ET system will require 

handling the 1000MB/sec raw data rate of the proposed Hall D 

experiment. More immediate is the challenge of incorporating 

JET systems into the next generation of slow controls and data 

flow management. 
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Fig. 1.  The ET system architecture and event flow. 

 

 
 

Fig. 2.  The speed of the ET system in handling events is given as a function 

of the event size in bytes. Dotted lines mark fixed data transfer rates. 
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Fig. 3.  The speed of the ET system as a function of the number of 

consumers. The performance for each platform is shown using the same station 

for all consumers and using a different station for each consumer. 

 

 
 

 

 
 

Fig. 4.  The speed of the ET system as a function of the number of events 

in one transfer (one get or put call). 
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