
5 February 2014

NUCLEAR PHYSICS DIVISION

FAST ELECTRONICS GROUP

Description and Requirements

for the

Global Trigger Processor

Benjamin Raydo (braydo@jlab.org)

Chris Cuevas (cuevas@jlab.org)

Scott Kaneta (skaneta@jlab.org)

Christopher Hewitt (hewittc@jlab.org)

28 February 2013 2

Table of Contents
1 - Introduction .. 4

2 - Purpose of the module ... 5

3 - Functional Description .. 5

3.1 - Signal Distribution .. 6

3.2 - High Speed VXS Serial Management.. 6

3.3 - Trigger Algorithm Processing ... 7

3.4 - CPU management interface ... 9

3.4.1 – System integration ... 9

3.4.2 – Barebox bootloader ... 9

3.4.3 – Linux kernel .. 10

3.4.4 – Root filesystem... 10

Specification Sheet ... 11

4 - Registers .. 12

4.1 Cfg Peripheral Registers Section (Peripheral offset = 0x0000) .. 15

4.2 Clk Peripheral Registers Section (Peripheral offset = 0x0100)... 17

4.3 Sd Peripheral Registers Section (Peripheral offset = 0x0200) ... 18

4.4 La (Logic Analyzer) Peripheral Registers Section (Peripheral offset = 0x0400) 22

4.5 GxbConfig Peripheral Registers Section (Peripheral offset = 0x0500, 0x0600) 22

4.6 Serdes Peripheral Registers Section (Peripheral offset = 0x1000, 0x1100, …, 0x1F00) 22

4.7 Trigger Peripheral Registers Section (Peripheral offset = 0x2000) .. 26

4.8 BCal Peripheral Registers Section (Peripheral offset = 0x3000) .. 27

4.9 FCal Peripheral Registers Section (Peripheral offset = 0x3100) ... 29

4.10 SSGenPattern Peripheral Registers Section (Peripheral offset = 0x3200, 0x3300, …, 0x3600) ... 31

4.11 Trigbit Peripheral Registers Section (Peripheral offset = 0x4000, 0x4100, …, 0x4F00) 33

5 Example sequence for board initialization.. 41

6 – Ethernet Interface to GTP .. 43

6.1 Firmware updates .. 43

6.2 Register & Scalers Accesses ... 43

7 - Power Supply and Current Consumption ... 44

8 - VXS Pinout Table ... 44

28 February 2013 3

28 February 2013 4

1 - Introduction
 The Global Trigger Processor (GTP) module is being designed for the Jefferson Lab 12GeV

experimental halls. This unit is responsible for sending fixed latency trigger signals to the Trigger

Supervisor (TS). The trigger signals are determined by evaluating the various detector subsystem Level

1 variable streams (derived from the Sub System Processors, SSP) in a set of trigger equations that

reside in the GTP. Trigger equations are evaluated in the 250MHz system pipeline and can be

reprogrammed to form different types of triggers by programming the Field Programmable Gate Array

(FPGA) that performs the processing. The GTP is designed for a dual-star configured VXS crate and

occupies one switch slot. The Global Trigger Crate (VXS) can only hold one GTP module located in the

Switch A slot and can compute up to 30 simultaneous trigger equation evaluations. The TS located in

the Trigger Distribution Crate makes the final trigger decision and will distribute a trigger word to the

front-end crates when the desired trigger conditions are met.

Figure 1a is a logical diagram of the Global Trigger system, and shows where the GTP module resides in

the Level 1 trigger system along with some of the critical signals interface it to the system.

Figure 1a: Global Trigger Crate

28 February 2013 5

2 - Purpose of the module
The GTP unit can receive up to 16 simultaneous subsystem variable streams to generate Level

1 triggers. Each subsystem variable stream provides a 32 bit quantity every 4ns (250MHz clock)

indicating the current status of that subsystem (i.e. the total energy, number of tracks, or min/max

energy for that subsystem in the current clock cycle). The eight 32 bit system variables are evaluated in

up to 30 trigger equations and each can be mapped to a trigger output bit high or low as defined by

the result of the trigger equation. All logic and computations run at the global 250MHz clock and are

pipelined to allow continuous trigger decisions.

3 - Functional Description
Figure 3a shows a detailed block diagram of the Global Trigger Processor module. There are 4

major sections to this module and include: signal distribution, high speed VXS serial link management,

trigger algorithm processing, and CPU management interface.

Figure 3a: Global Trigger Processor Hardware Block Diagram

28 February 2013 6

3.1 - Signal Distribution
 The standard configuration of the VXS crates in the data acquisition system requires

distribution of the clock, trigger, and sync signals. This is done with the Signal Distribution (SD) module,

which is placed in the VXS B switch slot.

Note: The transmit-to-receiver latency can vary by a few clock cycles between the Xilinx Aurora links

each time the receive locks to the incoming data stream, but once locked the latency is fixed.

Ultimately the GTP retimes the final trigger decision such that its latency is fixed with respect to the

physics event (accurate to within roughly 4ns).

3.2 - High Speed VXS Serial Management
 The SSP modules each communicate to the GTP via a 2 lane high speed serial VXS connection.

Each lane operates at 5 Gbps providing a 10Gbps link. Using the Xilinx Aurora protocol this 10Gbps

channel allows each SSP to provide a 32bit “instantaneous” subsystem quantity every 4ns

The Xilinx Aurora protocol uses the standard 8b10b line encoding scheme found in modern

high speed networking protocols. Some of the main features of this encoding scheme include: DC

balanced data stream, limited run length, and single bit error detection. Prototyping with the high

speed serial links has revealed extremely low error rates when used on the VXS backplanes with the

Xilinx Aurora protocol. While there is available bandwidth in the SSP->GTP links to provide capability

for error correction, the error rates have shown to be low enough such that we can reliably use error

detection and either ignore erroneous data or restart the Level 1 trigger system to avoid use of

corrupted data.

As shown in Figure 3a, one FPGA will process all sixteen sets of SSP serial data streams. It is

responsible for retiming the subsystem data streams such that a fixed latency trigger can be formed by

the final computational stage. The retiming is done by using the fixed latency “SYNC” signal from the

Trigger Inteface (TI). When the Level 1 trigger system starts, by deassertion of the “SYNC” signal, it will

buffer the subsystem streams in a FIFO and after a fixed number of cycles (the number of cycles is

determined by ensuring each SSP has been able to send at least to the GTP 2 subsystem words) the

FIFOs will be read out simultaneously, which turns the SSP streams into a fixed latency stream for the

final stage in the Level 1 trigger.

Deskewing the subsystem data streams such that correlated physics events arrive at the

Trigger Algorithm Processors at the same time will simplify the final processing stage.

28 February 2013 7

3.3 - Trigger Algorithm Processing
 Subsystem trigger data flows from the SSP into the GTP. Currently the Hall D implementation

requires the use of 8 SSP modules to support triggering for the following subsystems: barrel

calorimeter (BCAL), forward calorimeter (FCAL), tagger microscope (TAGM), tagger hodoscope (TAGH),

pair spectrometer (PS), start counter (ST), and time of flight (TOF). Each subsystem tends to have

characteristics unique characteristics that require the trigger logic to be specific to that detector rather

than generic.

The Hall D general trigger implementation is shown on figure 3.3a, where each subsystem data

stream comes from specific SSP with a specific data format. Programmable delays are introduced to

those data streams that allow the subsystems to be deskew with respect to each other. The deskew is

intended to compensate for cable length differences, detector response time differences, detector

position offsets, and allow intentional skew introduction in cases where the trigger decision timing is

desired to be set by a particular detector. The next stage performs some post-processing on the

subsystem data streams. In this case, only the FCAL requires this as to sum together the data from two

SSP data streams into one. Finally, programmable coincidence windows are formed defined by the

pulse extensions applied to hits (TAGM, TAGH, PS, ST, TOF cases) or by defining the time window of

integration in the case of energy sums and number of simultaneous hits (BCAL, FCAL cases).

Figure 3.3a

28 February 2013 8

 Finally the copies of the subsystem data streams sent to each of the trigger bits where the

logic is shown in figure 3.3b. The trigger bit logic has several thresholds, scale factors, and masks that

can be applied to the subsystem data. An arbitrary selection of the desired subsystem logic equations

can be put into coincidence that make the final trigger bit decision. The trigger bit decision has a

programmable pulse extension that can be applied and also has its timing adjusted so that a fixed

latency trigger decision is made. The fixed latency trigger decision is defined as a constant propagation

time from a detector output signal to the respective trigger bit decision. This is critical to ensure the

proper time window is captured on the front end (those time windows should capture the data that

formed and agree with the trigger decision).

Figure 3.3b

28 February 2013 9

3.4 - CPU management interface
 To aid configuration, programming, and status reporting, the GTP will use its I2C and Ethernet

connections. VXS Switch modules in the level 1 trigger use an I2C to communicate with the TI so their

registers can be reported through the VME bus. Due to its limited speed and size, the I2C interface will

be used for board type, firmware version, and Ethernet status and configuration. Refer to the GTP

Register spreadsheet for details.

The Ethernet connection will interface with the FPGA for all other configuration and control.

These large FPGA devices will utilize 128 MB flash memory to store multiple FPGA images and a

separate 128 MB for embedded processor code and other files. These devices will be programmable

via the Ethernet interface to modify the firmware and software. This will be particularly timesaving if

there are a host of trigger equations that need to be loaded for different experiments. The LAN

interface will also allow real-time readout of onboard scalers, general reconfiguration relating to

setting up SSP input ports, and programming of trigger equation coefficients.

The FPGA provides enough resource headroom to incorporate a reconfigurable Nios II

processor. This “soft” processor enables the GTP to run an operating system without adding any

additional physical components to the board. Running GNU/Linux on the GTP offers a number of

advantages to the project, including access to its advanced networking capabilities, remote

administration with secure shell, hardware peripheral access from user space, and a familiar

environment with which software developers can extend functionality. Mentor Graphics provides a

free cross-compiling Nios II toolchain based on the GNU Compiler Collection (GCC) called Sourcery

CodeBench Lite, which is used to build the operating system from a development workstation.

Remote debugging is also possible through the JTAG interface or over the network with “gdbserver”.

3.4.1 – System integration
 The Nios II platform is specified using Altera Qsys. The tool provides an interface to

interconnect a Nios II processor and timers with various peripherals, such as memory and flash

storage, which physically exist on the GTP board. Qsys generates a hardware description from the

configuration that is included with the rest of the FPGA design project. A command line tool called

“sopc2dts” converts the Qsys specification into header files and device tree source, which the

bootloader and kernel use to map memory addresses for peripheral access.

3.4.2 – Barebox bootloader
 Barebox is a bootloader for embedded systems containing support for the Nios II architecture.

Despite its small binary size, Barebox offers a substantial set of features, including the ability to boot

kernel images and mount root filesystems remotely using TFTP and NFS protocols. Remote booting

expedites the testing process as images can be quickly loaded directly into memory, bypassing lengthy

writes to flash storage. Barebox also provides a familiar Unix-like command line interface when

28 February 2013 10

accessed via Altera’s JTAG interface or the GPT’s serial port and offers a lot of flexibility to script tasks

such as network configuration and booting.

A board support package for the GTP board was derived from Barebox’s generic Nios II

platform example and the header file generated by the “sopc2dts” tool. Modifications were made to

the relevant drivers to accommodate the pairing of the Altera Triple Speed Ethernet MAC with the

Micrel KSZ9021RN Gigabit Ethernet PHY. Additionally, a partition table was created for the two flash

memory devices on the GTP. The first flash device contains small partitions for the Barebox binary

image and its configuration environment, as well as larger partitions for both the kernel and the root

filesystem. A small general-purpose configuration partition resides at the end for any additional non-

volatile parameters, such as a MAC address. The second flash device only contains one partition to

contain loadable bitstreams for reprogramming the Stratix IV FPGA.

3.4.3 – Linux kernel
While the mainline Linux kernel does not support the Nios II architecture, a community named

RocketBoards has made significant efforts to port to and support this platform. At the time of the GTP

Linux porting effort, kernel 3.12 was the most current stable release and determined as the best

starting point. As with Barebox, a board support package was created for the GTP. Configuration

options were selected to best match the combination of attached peripherals and memory layout.

Additionally, complications with the MAC and PHY kernel drivers had to be addressed before

networking functioned reliably on the GTP.

3.4.4 – Root filesystem
 Since there is no formal distribution of Linux for the Nios II architecture, the root filesystem,

which Linux mounts at boot, must be built from source code. A package of scripts called Buildroot

assists in this process and can automatically download and build the required files. Additionally, other

packages such as OpenSSH and uEmacs can be selected for building. Once all source code is built,

Buildroot generates a JFFS2 image, a filesytem optimized for NOR flashes, which is then flashed to the

device.

 Once Barebox, the Linux kernel, and the root filesystem exist on the flash memory, the board

can be successfully booted into a usable Linux environment. Additional software can be developed in

C or C++ and cross-compiled for the GTP Linux environment then transferred to the system via SCP,

TFTP, or NFS.

28 February 2013 11

Specification Sheet

MECHANICAL

 Single width VITA 41 (VXS) Switch Module

HIGH SPEED SERIAL I/O:

From Switch B (Signal Distribution module)

 250MHz Clock (LVPECL)

 Trig1, Trig2, Sync (LVPECL)

To Payload Ports 1-16 (SSP/spare modules)

 2x 5 Gbps SSP Stream (Xilinx Aurora)

 LINKUP out (LVTTL)

 BUSY out (LVTTL)
Outputs:

 Trigger output decision time <512ns

Front Panel:

 1x RJ45: Ethernet

 4x Densishield: Trigger Signals (LVPECL)

 1x QSFP Fiber Transceiver

 1x JTAG

Indicators: (Front Panel)

 Power – Blue LED

 Trigger – Amber LED

 Alarm – Red LED

Programming:

 On board JTAG Port

 100/1000Mbps Ethernet Interface

 Trigger equation and processing for up to 16 JLAB
SubSystem Processors

Power Requirements:

 +5v @ 10 Amps (From Backplane)

 Local regulators for other required voltages

Environment:

 Forced air cooling: N CFM

 Commercial grade components (85°C max)

28 February 2013 12

4 - Registers
The GTP registers can be accessed two ways: Ethernet and I2C using the TI. The I2C register set is very

limited intended to convey only enough information so that the Ethernet interface can be used. The

Ethernet interface uses a custom protocol to facilitate register access as well as other functions that

will be described in detail later.

I2C Register Summary:

Note: I2C accesses are 16bits each. Address offsets listed are 16bit word offsets. These

registers are identical to the ones in the Ethernet interface (Cfg peripheral), please refer to the

Ethernet versions for bit specific details. Since the Ethernet interface uses 32bit words

(typically) the I2C uses 2x 16bit registers to provide the same information. The lower address

access in the I2C words are the lower 16bits of the 32bit Ethernet word.

Register Name Description Address Offset

BoardId Board identification 0x00-0x01

FirmwareRev Firmware revision 0x02-0x03

CpuStatus Linux CPU status 0x04-0x05

Hostname[] Linux CPU hostname 0x06-0x0D

Ethernet Register Summary:

Note: Ethernet registers are 32bits each unless noted others. Unaligned non-32bit word

accesses are not supported unless stated explicitly.

Register Name Description Address Offset

Cfg peripheral (offset 0x0000)

BoardId Board identification 0x0000

FirmwareRev Firmware revision 0x0004

CpuStatus Linux CPU status 0x0008

Hostname[] Linux CPU hostname 0x000C

Clk peripheral (offset 0x0100)

Ctrl Clock control 0x0000

Status Clock status 0x0004

Sd peripheral (offset 0x0200)

ScalerLatch Latch scalers 0x0000

Scalers[] Scalers 0x0004

PulserPeriod Pulser Period 0x0100

PulserLowCycles Pulser low cycles 0x0104

PulserNPulses Pulser pulse count 0x0108

PulserDone Pulser status 0x010C

PulserStart Pulser start 0x0110

SrlSel[] Signal muxing 0x0120

28 February 2013 13

La peripheral (offset 0x0400)

Ctrl Analyzer Control 0x0000

Status Analyzer Status 0x0004

Data[] Analyzer data 0x0020

CompareMode[] Analyzer compare modes 0x0040

CompareThreshold[] Analyzer compare thresholds 0x0060

MaskEn[] Analyzer masks 0x0080

MaskVal[] Analyzer match values 0x00A0

GxbConfig peripheral (offset 0x0500, 0x0600)

Status Gxb Config Status 0x0000

Ctrl Gxb Config Control 0x0004

Ctrl2 Gxb Config Control 0x0008

TxRxIn Gxb Config Data In 0x000C

TxRxOut Gxb Config Data Out 0x0010

Serdes peripheral (0x1000, 0x1100, …, 0x1F00)

Ctrl Control 0x0000

Status Status 0x0010

ErrTile Tile 0 rx bit errors 0x0018

Status2 Status 0x001C

LaCtrl Analyzer Control 0x0020

LaStatus Analyzer Status 0x0024

LaData[] Analyzer Data 0x0030

CompareMode Analyzer Compare Mode 0x0050

CompareThreshold Analyzer Compare Thresold 0x0070

MaskEn[] Analyzer Masks 0x0090

MaskVal[] Analyzer Compare Vals 0x00B0

Trigger peripheral (offset 0x2000)

Ctrl SSP trigger configuration 0x0000

BCal peripheral (offset 0x3000)

Delay Pulse delay 0x0000

Width Pulse width 0x0004

HistDataEnergy Energy histogram 0x0010

HistDataHits Hit count histogram 0x0018

FCal peripheral (offset 0x3100)

Delay Pulse delay 0x0000

Width Pulse width 0x0004

HistDataEnergy Energy histogram 0x0010

28 February 2013 14

GtpHitPattern peripheral (offset 0x3200, 0x3300, 0x3400, 0x3500, 0x3600)

Delay Pulse delay 0x0000

Width Pulse width 0x0004

Scalers[] Bit pattern scalers 0x0080

Trigbit peripheral (offset 0x4000, 0x4100, …, 0x4F00)

Ctrl Logic control 0x0000

TrigOutCtrl Trigout control 0x0004

TrigOutStatus Trigout status 0x0008

BCalCtrl0 BCal control 0x0010

BCalCtrl1 BCal control 0x0014

FCalCtrl FCal control 0x0020

BFCalCtrl BCal,FCAL control 0x0030

PSCtrl PS control 0x0040

STCtrl0 ST control 0x0050

STCtrl1 ST control 0x0054

TOFCtrl0 TOF control 0x0060

TOFCtrl1 TOF control 0x0064

TagMCtrl TAGM control 0x0070

TagHCtrl TAGM control 0x0074

Scalers[] Scalers 0x0080

28 February 2013 15

4.1 Cfg Peripheral Registers Section (Peripheral offset = 0x0000)
 Basic board information registers can be used to verify that this board is the GTP and check for

the software revision, which should be checked for compatibility. When using the I2C access to these

registers, the Ethernet hostname of the Linux CPU can be retrieve so that a connection can be

established over Ethernet for access to the full register space.

Register: BoardId

 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x47555020

31 30 29 28 27 26 25 24

BOARD_ID

23 22 21 20 19 18 17 16

BOARD_ID

15 14 13 12 11 10 9 8

BOARD_ID

7 6 5 4 3 2 1 0

BOARD_ID

BOARD_ID (RO):

0x47555020 = “GTP ” in ASCII

Register: FirmwareRev

 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

GTPTYPE

23 22 21 20 19 18 17 16

GTPTYPE

15 14 13 12 11 10 9 8

FIRMWARE_REV_MAJOR

7 6 5 4 3 2 1 0

FIRMWARE_REV_MINOR

GTPTYPE(RO):

Firmware build type [0x0000 to 0xFFFF]

Defined types:

0x0001 HallD

FIRMWARE_REV_MAJOR (RO):

Major firmware revision number

FIRMWARE_REV_MINOR (RO):

Minor firmware revision number

28 February 2013 16

Register: CpuStatus

 Address Offset: 0x0008

 Size: 32bits

 Reset State: 0x0000FFFC

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - BOOTED

BOOTED (RO):

‘0’ – GTP Linux server not running

‘1’ – GTP Linux server is running

Register: Hostname[]

 Address Offset: 0x000C, 0x0010, 0x0014, 0x0018

 Size: 32bits

 Reset State: 0x00000000, 0x00000000, 0x00000000, 0x00000000

31 30 29 28 27 26 25 24

HOSTNAME_CHAR3,7,11,15

23 22 21 20 19 18 17 16

HOSTNAME_CHAR2,6,10,14

15 14 13 12 11 10 9 8

HOSTNAME_CHAR1,5,9,13

7 6 5 4 3 2 1 0

HOSTNAME_CHAR0,4,8,12

HOSTNAME_CHARx(RO):

NULL terminated string (maximum length is 15 characters).

This string is the GTP Linux hostname intended to be read from I2C to then establish a

connection via Ethernet.

28 February 2013 17

4.2 Clk Peripheral Registers Section (Peripheral offset = 0x0100)
 This peripheral is responsible for configuring and monitoring the clock signals used to drive the

GTP logic and Serdes.

Register: Ctrl

 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x80000000

31 30 29 28 27 26 25 24

CLKRESET - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - CLKSRC

CLKRESET (RW):

‘1’ – GTP PLL reset asserted.

‘0’ – GTP PLL reset released.

CLKSRC (RW):

0 or 3 – Clock source disabled.

1 – VXS SWB 250MHz clock source used.

2 – Internal 250MHz clock source used.

Note: CLKRESET should be asserted when CLKSRC is being changed or there is no clock source. Only

when CLKSRC has been set to a stable input clock should CLKRESET be released.

Register: Status

 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - R_LOCK L_LOCK GCLK_LOCK

GCLK_LOCK(RO): ‘1’ - Global clock PLL is locked. ‘0’ – not locked.

L_LOCK(RO): ‘1’ – Left side Serdes transmit clock PLL is locked. ‘0’ – not locked.

R_LOCK(RO): ‘1’ – Right side Serdes transmit clock PLL is locked. ‘0’ – not locked.

28 February 2013 18

4.3 Sd Peripheral Registers Section (Peripheral offset = 0x0200)
 Signal source muxing, generic pulser, and scalers are handled by the Sd peripheral.

Register: ScalerLatch

 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - DISABLE

DISABLE (RW):

‘1’ – Scalers/histograms on GTP are halted. This must be done before reading values.

‘0’ – Scalers/histograms on GTP are active and accumulating.

Note: Normally the GtpServer app running on the Linux CPU manages the scalers and their control. To

read scaler values, see the GtpServer interface documentation in a following chapter.

Register: Scalers[]+SD_SCALER_x*4

 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

SCALER

23 22 21 20 19 18 17 16

SCALER

15 14 13 12 11 10 9 8

SCALER

7 6 5 4 3 2 1 0

SCALER

SCALER (RO): 32bit scaler value.

The index into Scalers[] correspond to scalers according to this table:

Scaler Name Index in

Scalers[]

Description

SD_SCALER_SYSCLK 0 50MHz clock. Used as reference for normalizing

SD_SCALER_GCLK 1 250MHz Global clock

SD_SCALER_SYNC 2 VXS SWB Sync input

SD_SCALER_TRIG1 3 VXS SWB Trig1 input

SD_SCALER_TRIG2 4 VXS SWB Trig2 input

SD_SCALER_BUSY 5 VXS SWB Busy output (number of times asserted)

SD_SCALER_BUSYCYCLES 6 VXS SWB Busy output (number of GCLK cycles

asserted)

SD_SCALER_FP_IN0 7 Front panel anylevel input 0

SD_SCALER_FP_IN1 8 Front panel anylevel input 1

SD_SCALER_FP_IN2 9 Front panel anylevel input 2

SD_SCALER_FP_IN3 10 Front panel anylevel input 3

28 February 2013 19

SD_SCALER_FP_OUT0 11 Front panel LVDS output 0

SD_SCALER_FP_OUT1 12 Front panel LVDS output 1

SD_SCALER_FP_OUT2 13 Front panel LVDS output 2

SD_SCALER_FP_OUT3 14 Front panel LVDS output 3

Register: PulserPeriod

 Address Offset: 0x0100

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

PERIOD

23 22 21 20 19 18 17 16

PERIOD

15 14 13 12 11 10 9 8

PERIOD

7 6 5 4 3 2 1 0

PERIOD

PERIOD (RW):

Pulser period in 4ns ticks

Register: PulserLowCycles

 Address Offset: 0x0104

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

LOW_CYCLES

23 22 21 20 19 18 17 16

LOW_CYCLES

15 14 13 12 11 10 9 8

LOW_CYCLES

7 6 5 4 3 2 1 0

LOW_CYCLES

LOW_CYCLES(RW):

 Number of 4ns ticks pulser output is held low during the pulser period.

28 February 2013 20

Register: PulserNPulses
 Address Offset: 0x0108

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

COUNT

23 22 21 20 19 18 17 16

COUNT

15 14 13 12 11 10 9 8

COUNT

7 6 5 4 3 2 1 0

COUNT

COUNT (R/W):
0x00000000: disable pulser output

0x00000001 to 0xFFFFFFFE: number of periods to deliver pulser output

0xFFFFFFFF: infinite cycle count for pulser output

Notes:

1) When using fixed count of pulses the pulser must be trigger to start by writing to the

PulserStart register

Register: PulserStart
 Address Offset: 0x0110

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

PULSER_START

23 22 21 20 19 18 17 16

PULSER_START

15 14 13 12 11 10 9 8

PULSER_START

7 6 5 4 3 2 1 0

PULSER_START

PULSER_START (WO):
Write any value to start pulser operation. The pulse number counter is cleared.

Register: PulserDone
 Address Offset: 0x010C

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - DONE

DONE (RO):
‘0’ – pulser is still delivering pulses as defined in PulserNPulses

‘1’ – pulser is is not active (either disabled or has finished fixed pulse count)

28 February 2013 21

Register: SrcSel[]

 Address Offset: 0x0120 + 4*SD_SRC_x

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - SRC

SRC (RW):

Selects the signal source for the output signal (output signal is indicated by the index into

SrcSel[])

The SD_SRC_x ID map is used to determine which index in the SrcSel register array to use:

SD_SRC_x ID NAME Index in SrcSel Description

SD_SRC_TRIG 0 GTP trigger source

SD_SRC_SYNC 1 GTP sync source

SD_SRC_FP_LVDSOUT0 2 Front Panel LVDS output #0

SD_SRC_FP_LVDSOUT1 3 Front Panel LVDS output #1

SD_SRC_FP_LVDSOUT2 4 Front Panel LVDS output #2

SD_SRC_FP_LVDSOUT3 5 Front Panel LVDS output #3

Possible values for SRC contents of register:

SD_SRC_SEL_x Value Source Signal Description

SD_SRC_SEL_0 0 Drive constant ‘0’

SD_SRC_SEL_1 1 Drive constant ‘1’

SD_SRC_SEL_SYNC 2 VXS SWB Sync

SD_SRC_SEL_TRIG1 3 VXS SWB Trig1

SD_SRC_SEL_TRIG2 4 VXS SWB Trig2

SD_SRC_SEL_FPIN0 5 Front panel input#0

SD_SRC_SEL_FPIN1 6 Front panel input#1

SD_SRC_SEL_FPIN2 7 Front panel input#2

SD_SRC_SEL_FPIN3 8 Front panel input#3

SD_SRC_SEL_PULSER 18 Pulser output

SD_SRC_SEL_BUSY 19 Event builder busy

undefined 11-31 Undefined

SD_SRC_SEL_TRIGOUTx 32+x Triggbit bit x output (x from 0 to 31)

28 February 2013 22

4.4 La (Logic Analyzer) Peripheral Registers Section (Peripheral offset =

0x0400)
 Provides the interface to the logic analyzer. This peripheral is for debugging purposes only.

Information on this peripheral can be supplied upon request.

4.5 GxbConfig Peripheral Registers Section (Peripheral offset = 0x0500,

0x0600)
 Interfaces the Serdes transceivers for low-level settings and testing. This peripheral is for

debugging purposes only. Information on this peripheral can be supplied upon request.

4.6 Serdes Peripheral Registers Section (Peripheral offset = 0x1000, 0x1100,

…, 0x1F00)
 This peripheral configures and monitors the VXS serial links coming from the SSP. The

following table indicates the peripheral address to payload mapping:

Peripheral Index VXS Payload Port Peripheral Address

0 PP1 0x1000

1 PP2 0x1100

2 PP3 0x1200

3 PP4 0x1300

4 PP5 0x1400

5 PP6 0x1500

6 PP7 0x1600

7 PP8 0x1700

8 PP9 0x1800

9 PP10 0x1900

10 PP11 0x1A00

11 PP12 0x1B00

12 PP13 0x1C00

13 PP14 0x1D00

14 PP15 0x1E00

15 PP16 0x1F00

28 February 2013 23

Register: Ctrl
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000001

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - ERR_EN ERR_RST - -

7 6 5 4 3 2 1 0

- - - - - - - POWER_DOWN

POWER_DOWN (RW):
‘0’ – transceiver is disabled.

‘1’ – transceiver is enabled.

ERR_RST (RW):
‘1’ – reset bit error counters on link. Should be done once link is established

ERR_EN (RW):
‘1’ – enabled bit error counters on link.

‘0’ – disabled bit error counters on link.

28 February 2013 24

Register: Status
 Address Offset: 0x0010

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- RXSRCRDYN TXLOCK CHANNELUP - - - -

7 6 5 4 3 2 1 0

- - LANEUP1 LANEUP0 - - HARDERR1 HARDERR0

HARDERRx (RO):
‘1’ – transceiver lane x has a hard error. Serdes must be reset to recover

‘0’ – transceiver hard error condition not set.

LANEUPx (RO):
‘1’ – transceiver lane x is established.

‘0’ – transceiver lane x is not established.

CHANNELUP (RO):

‘1’ – transceiver channel is established.

‘0’ – transceiver channel is not established.

TXLOCK (RO):
‘1’ – transceiver reference transmitter PLL is locked

‘0’ – transceiver reference transmitter PLL is not locked.

RXSRCRDYN (RO):
‘1’ – no data is being received by transceiver.

‘0’ – data is being received by transceiver.

Notes:
1) TXLOCK must be ‘1’ for transceiver to work. If not, check that clock sources are

working/setup.
2) LANEUP signals must be ‘1’ for transceiver channel to come up. If not, check connecting

board to ensure its enabled and using the same reference clock.
3) Once CHANNELUP = ‘1’, enable bit error monitors to track errors.

28 February 2013 25

Register: ErrTile
 Address Offset: 0x0018

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

LANE1_BITERRORS

23 22 21 20 19 18 17 16

LANE1_BITERRORS

15 14 13 12 11 10 9 8

LANE0_BITERRORS

7 6 5 4 3 2 1 0

LANE0_BITERRORS

LANEx_BITERRORS (RO):
16bit serdes bit error counter. Must be enabled in Ctrl to count.

Register: Status2
 Address Offset: 0x001C

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - CRC_PASS

15 14 13 12 11 10 9 8

LATENCY

7 6 5 4 3 2 1 0

LATENCY

LATENCY (RO):
16bit latency measure from SYNC released to when first data word received by serdes

CRC_PASS (RO):
‘1’ – received data passed CRC verification for last SYNC period

‘0’ – received data failed CRC verification for last SYNC period

28 February 2013 26

4.7 Trigger Peripheral Registers Section (Peripheral offset = 0x2000)
 This peripheral selects the subsystem streams to enable and deskew then provides these a

time coherent set of subsystem data streams for the trigger bit processor peripherals

Register: Ctrl
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

TRG_EN7 TRG_EN6 TRG_EN5 TRG_EN4 TRG_EN3 TRG_EN2 TRG_EN1 TRG_EN0

TRG_ENx (RW):
‘0’ – subsystem data stream is not enabled in GTP

‘1’ – subsystem data stream is enabled in GTP

The following table shows the mapping of TRG_EN bits to subsystem streams and their corresponding

SSPs:

TRG_ENx Subsystem Data Stream SSP Payloads

0 BCal Energy PP15

1 BCal Hit Modules PP15

2 FCal Energy PP13, PP11

3 TagM Hit Pattern PP9

4 TagH Hit Pattern PP7

5 PS Hit Pattern PP5

6 ST Hit Pattern PP3

7 TOF Hit Pattern PP1

28 February 2013 27

4.8 BCal Peripheral Registers Section (Peripheral offset = 0x3000)
 The BCal peripheral performs some pre-processing and monitoring on the BCal SSP streams

that are then fed as a common input to all trigger bit peripherals.

Register: Delay
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

DELAY

DELAY (RW):
8bit delay value (0-255) in 4ns ticks that is added to the subsystem data stream. This is the delay

mechanism to be used for deskewing subsystems with respect to each other.

Register: Width
 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

WIDTH

WIDTH (RW):
8bit width value (0-255) in 4ns ticks. This defines the integration time window for which the

BCal Energy is formed as well as BCalHitModules. A value of 0 has an integration window

equal to 1 sample, a value of 1 has an integration window equal to 2 samples, and so on…

28 February 2013 28

Register: HistDataEnergy
 Address Offset: 0x0010

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

DATA (RO):
When scalers were enabled, then disabled (using the Sd.ScalerLatch enable/disable control) this

register may be read 32 times, which extracts 32bins worth of the BCalEnergy histograms. Each

bin represents the count of observed BCalEnergy integrals observed for that bin, where the bin is

equal to 2
N
 (N is equal to the word number, 0-31, read out).

Note: Normally the GtpServer app running on the Linux CPU manages the scalers and their control. To

read scaler values, see the GtpServer interface documentation in a following chapter.

Register: HistDataHits
 Address Offset: 0x0018

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

DATA (RO):
When scalers were enabled, then disabled (using the Sd.ScalerLatch enable/disable control) this

register may be read 32 times, which extracts 32bins worth of the BCalHitModules histograms.

Each bin represents the count of observed BCalHitModule integrals observed for that bin, where

the bin is equal to the word number, 0-31, read out.

Note: Normally the GtpServer app running on the Linux CPU manages the scalers and their control. To

read scaler values, see the GtpServer interface documentation in a following chapter.

28 February 2013 29

4.9 FCal Peripheral Registers Section (Peripheral offset = 0x3100)
 The FCal peripheral performs some pre-processing and monitoring on the FCal SSP streams

that are then fed as a common input to all trigger bit peripherals.

Register: Delay
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

DELAY

DELAY (RW):
8bit delay value (0-255) in 4ns ticks that is added to the subsystem data stream. This is the delay

mechanism to be used for deskewing subsystems with respect to each other.

Register: Width
 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

WIDTH

WIDTH (RW):
8bit width value (0-255) in 4ns ticks. This defines the integration time window for which the

FCal Energy is formed. A value of 0 has an integration window equal to 1 sample, a value of 1

has an integration window equal to 2 samples, and so on…

28 February 2013 30

Register: HistDataEnergy
 Address Offset: 0x0010

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

DATA (RO):
When scalers were enabled, then disabled (using the Sd.ScalerLatch enable/disable control) this

register may be read 32 times, which extracts 32bins worth of the FCalEnergy histograms. Each

bin represents the count of observed FCalEnergy integrals observed for that bin, where the bin is

equal to 2
N
 (N is equal to the word number, 0-31, read out).

Note: Normally the GtpServer app running on the Linux CPU manages the scalers and their control. To

read scaler values, see the GtpServer interface documentation in a following chapter.

28 February 2013 31

4.10 SSGenPattern Peripheral Registers Section (Peripheral offset = 0x3200,

0x3300, …, 0x3600)
 The SSGenPattern peripheral performs some pre-processing and monitoring on the generic

pattern based SSP streams that are then fed as a common input to all trigger bit peripherals.

Register: Delay
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

DELAY

DELAY (RW):
8bit delay value (0-255) in 4ns ticks that is added to the subsystem data stream. This is the delay

mechanism to be used for deskewing subsystems with respect to each other.

Register: Width
 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

WIDTH

WIDTH (RW):
8bit width value (0-255) in 4ns ticks. This defines the number of ticks each bit in the pattern is

pulse stretched. A value of 0 extends hits by 0ns, a value of 1 extends hits by 4ns, etc…

28 February 2013 32

Register: Scalers[]
 Address Offset: 0x0080+N*4

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

SCALER

23 22 21 20 19 18 17 16

SCALER

15 14 13 12 11 10 9 8

SCALER

7 6 5 4 3 2 1 0

SCALER

DATA[N] (RO):
N can range from 0 to 31 where SCALER[N] is the count of hits received on bit N of that hit

pattern based subsystem data stream.

Note: Normally the GtpServer app running on the Linux CPU manages the scalers and their control. To

read scaler values, see the GtpServer interface documentation in a following chapter.

28 February 2013 33

4.11 Trigbit Peripheral Registers Section (Peripheral offset = 0x4000,

0x4100, …, 0x4F00)
 The Trigbit peripheral performs the trigger bit logic that feeds the Trigger Supervisor, TS, GTP

inputs. Currently only 16 Trigbit peripherals exists, mapping to the first 16 trigger bit inputs on the GTP

data path of the TS. Each Trigbit peripheral receives an identical copy of the data stream as defined by

the Trigger peripheral and BCal, FCal, SSGenPattern peripherals. Each Trigbit has its own set of

registers to manipulate the input data streams and apply thresholds for define its trigger bit definition.

See section 3.3 for a detailed diagram on trigger bit logic and the registers below are used. A summary

of the trigger bit equations are provided here where reference the register fields below:

BCalHitModules_Trig:
BCalHitModules >= BCAL_HITMODULES_THR

BFCalEnergy_Trig:
BCalEnergy*BCAL_ENERGY_SCALE +

FCalEnergy*FCAL_ENERGY_SCALE >= BFCAL_ENERGY_THR

TagMPattern_Trig:
or_vector(TagMHitPattern & MASK)

TagHPattern_Trig:
or_vector(TagHHitPattern & MASK)

PSPattern_Trig:
or_vector(PSHitPattern(7..0) & MASK(7..0)) &&

or_vector(PSHitPattern(15..8) & MASK(15..8))

STNHits_Trig:

Bit_count(STHitPattern & MASK) >= ST_HITCOUNT_THR

TOFNHits_Trig:

Bit_count(TOFHitPattern & MASK) &&

or_vector(TOFHitPattern(15..0) & MASK(15..0)) &&

or_vector(TOFHitPattern(31..16) & MASK(31..16))

Trig_Out:
Ctrl.En0 &&

(!Ctrl.En1 || BCalHitModules_Trig) &&

(!Ctrl.En2 || BFCalEnergy_Trig) &&

(!Ctrl.En3 || TagMPattern_Trig) &&

(!Ctrl.En4 || TagHPattern_Trig) &&

(!Ctrl.En5 || PSPattern_Trig) &&

(!Ctrl.En6 || STNHits_Trig) &&

(!Ctrl.En7 || TOFNHits_Trig)

28 February 2013 34

Register: Ctrl
 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

EN7 EN6 EN5 EN4 EN3 EN2 EN1 EN0

EN0 (RW):
‘1’ – enable trigger bit equation

‘0’ – disable trigger bit equation

EN1 (RW):
‘1’ – enable BCalHitModules logic in trigger bit equation

‘0’ – disable BCalHitModules logic in trigger bit equation

EN2 (RW):
‘1’ – enable BFCalEnergy logic in trigger bit equation

‘0’ – disable BFCalEnergy logic in trigger bit equation

EN3 (RW):
‘1’ – enable TagMPattern logic in trigger bit equation

‘0’ – disable TagMPattern logic in trigger bit equation

EN4 (RW):
‘1’ – enable TagHPattern logic in trigger bit equation

‘0’ – disable TagHPattern logic in trigger bit equation

EN5 (RW):
‘1’ – enable PSCoincidence logic in trigger bit equation

‘0’ – disable PSCoincidence logic in trigger bit equation

EN6 (RW):
‘1’ – enable STNHits logic in trigger bit equation

‘0’ – disable STNHits logic in trigger bit equation

EN7 (RW):
‘1’ – enable TOFNHits logic in trigger bit equation

‘0’ – disable TOFNHits logic in trigger bit equation

28 February 2013 35

Register: TrigOutCtrl
 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

WIDTH

15 14 13 12 11 10 9 8

- - - - LATENCY

7 6 5 4 3 2 1 0

LATENCY

LATENCY (RW):
0-4095 (in 4ns ticks) for trigger bit latency. This time is measure from the global release of

SYNC at the front-end crates to when the trigger bit sends decisions to the trigger supervisor. It

is desirable to set this latency as large as the system can comfortably handle so that when future

changes to the trigger logic are made no changes to the LATENCY or capture windows for the

front-end crates need to be adjusted. In the case for Hall D, this value would perhaps be around

825 (825*4ns=3300ns).

 WIDTH (RW):

0-255 (in 4ns ticks) that the trigger bit output pulse is extended. This may be useful to stretch

pulses to ensure reliable capture by receiving end or to suppress multiple assertions of the trigger

due to signals hovering around thresholds once fired.

Register: TrigOutStatus
 Address Offset: 0x0008

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - LATENCY_ERR

LATENCY_ERR (RO):

 This bit is asserted when the LATENCY in the CTRL register is not satisfied. For example, if

the trigger logic or links are delaying the trigger bit decision past the desired latency set this bit will be set

‘1’ to indicate this error condition. This condition will not be clear until another SYNC has been issued to

flush and restart the trigger data pipeline.

28 February 2013 36

Register: BCalCtrl0
 Address Offset: 0x0010

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

BCAL_ENERGY_SCALE

BCAL_ENERGY_SCALE (RW):

 This is a scaling factor applied to the BCAL_ENERGY integral to be used in the BFCAL logic

section of the trigger bit processing.

Register: BCalCtrl1
 Address Offset: 0x0014

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - BCAL_HITMODULES_THR

BCAL_HITMODULES_THR (RW):

 This is a threshold applied to the BCAL_HITMODULES integral, making the

BCAL_HITMODULES trigger logic decision.

Register: FCalCtrl0
 Address Offset: 0x0020

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

FCAL_ENERGY_SCALE

FCAL_ENERGY_SCALE (RW):

 This is a scaling factor applied to the FCAL_ENERGY integral to be used in the BFCAL logic

section of the trigger bit processing.

28 February 2013 37

Register: BFCalCtrl0
 Address Offset: 0x0030

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

BFCAL_ENERGY_THR

23 22 21 20 19 18 17 16

BFCAL_ENERGY_THR

15 14 13 12 11 10 9 8

BFCAL_ENERGY_THR

7 6 5 4 3 2 1 0

BFCAL_ENERGY_THR

BFCAL_ENERGY_THR (RW):

 This is a threshold applied to the BFCAL logic section of the trigger bit processing.

Register: PSCtrl
 Address Offset: 0x0040

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

MASK

7 6 5 4 3 2 1 0

MASK

MASK (RW):

 This is a mask that is bitwise ANDed with the PSHitPattern data stream to disable certain bits

from being used in the PS concidence section of the trigger bit processing.

Register: STCtrl0
 Address Offset: 0x0050

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

MASK

23 22 21 20 19 18 17 16

MASK

15 14 13 12 11 10 9 8

MASK

7 6 5 4 3 2 1 0

MASK

MASK (RW):

 This is a mask that is bitwise ANDed with the STHitPattern data stream to disable certain bits

from being used in the STNHits section of the trigger bit processing.

28 February 2013 38

Register: STCtrl1
 Address Offset: 0x0054

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - ST_HITCOUNT_THR

ST_HITCOUNT_THR (RW):

 This is a threshold applied to the STNHits section of the trigger bit processing.

Register: TOFCtrl0
 Address Offset: 0x0060

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

MASK

23 22 21 20 19 18 17 16

MASK

15 14 13 12 11 10 9 8

MASK

7 6 5 4 3 2 1 0

MASK

MASK (RW):

 This is a mask that is bitwise ANDed with the TOFHitPattern data stream to disable certain bits

from being used in the TOFNHits and coincidence section of the trigger bit processing.

Register: TOFCtrl1
 Address Offset: 0x0064

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - TOF_HITCOUNT_THR

TOF_HITCOUNT_THR (RW):

 This is a threshold applied to the TOFNHits section of the trigger bit processing.

28 February 2013 39

Register: TagMCtrl
 Address Offset: 0x0070

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

MASK

23 22 21 20 19 18 17 16

MASK

15 14 13 12 11 10 9 8

MASK

7 6 5 4 3 2 1 0

MASK

MASK (RW):

 This is a mask that is bitwise ANDed with the TagMHitPattern data stream to disable certain bits

from being used in the TagMHitPattern OR section of the trigger bit processing.

Register: TagHCtrl
 Address Offset: 0x0074

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

MASK

23 22 21 20 19 18 17 16

MASK

15 14 13 12 11 10 9 8

MASK

7 6 5 4 3 2 1 0

MASK

MASK (RW):

 This is a mask that is bitwise ANDed with the TagHHitPattern data stream to disable certain bits

from being used in the TagHHitPattern OR section of the trigger bit processing.

28 February 2013 40

Register: Scalers[]+TRIGBIT_SCALER_x*4

 Address Offset: 0x0080

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

SCALER

23 22 21 20 19 18 17 16

SCALER

15 14 13 12 11 10 9 8

SCALER

7 6 5 4 3 2 1 0

SCALER

SCALER (RO): 32bit scaler value.

The index into Scalers[] correspond to scalers according to this table:

Scaler Name Index in

Scalers[]

Description

TRIGBIT_SCALER_BCALHIT 0 BCalHitModules trigger bit logic

TRIGBIT_SCALER_BFCAL 1 BFCalEnergy trigger bit logic

TRIGBIT_SCALER_TAGM 2 TagM trigger bit logic

TRIGBIT_SCALER_TAGH 3 TagH trigger bit logic

TRIGBIT_SCALER_PS 4 PS trigger bit logic

TRIGBIT_SCALER_ST 5 ST trigger bit logic

TRIGBIT_SCALER_TOF 6 TOF trigger bit logic

TRIGBIT_SCALER_TRIGOUT 7 Trigbit output

28 February 2013 41

5 Example sequence for board initialization

 Certain sequences must be following in order for the GTP configuration to successfully store

registers, acquire seriail links, and process trigger logic. The following information will outline a

sequence for successful configuration for the typical VXS configuration.

1. Identify and connect to GTP

a. Using I2C, read Cfg.BoardId to confirm GTP board identity

b. Using I2C, read Cfg.FirmwareRev to confirm GTP firmware compatibility with driver

c. Using I2C, read Cfg.CpuStatus bit 0 to check if GTP Linux server app is running

d. If all above checks are valid, use I2C to read Cfg.Hostname and finally connect to

the GtpServer app over Ethernet according to the outlined protocol described

below.

e. Verify Ethernet connection with GtpServer by reading Cfg.BoardId once again. All

communication with the GTP shall now go over the Ethernet interface.

2. Clock, Trig, Sync, Busy setup

a. Once the VXS crate clock from the TI is set to the running source and is stable, set

Clk.Ctrl to use the VXS clock source and assert reset.

b. Deassert Clk.Ctrl reset, delay >10ms, then confirm all clock PLLs are locked in

Clk.Status (if not there is a problem with the source clock selection)

c. Set Sd.SetSrcSel[SD_SRC_TRIG] to SD_SRC_SEL_TRIG1 (Trig is from SWB Trig1)

d. Set Sd.SetSrcSel[SD_SRC_SYNC] to SD_SRC_SEL_SYNC (Sync is from SWB Sync)

3. Enable/Reset Serial links from SSP

a. Serdes[].Ctrl = 0x1, then Serdes[].Ctrl = 0x0 for existing SSP payloads

(enable populated serdes)

b. Serdes[].Ctrl = 0x1 for non-existing SSP payloads (disable unpopulated

serdes)

4. Verify Serial links from SSP (once SSPs are configured)

a. Check Serdes[].Status bit12 to verify channel is up on all enabled SSP payloads. If

channel is not up a reset may be needed (go back to step 3), possibly also on the

SSP side. Print a bit decoding of the Serdes[].Status to help diagnose the issue.

b. If channel is up, enable and reset the bit error counter: Serdes[].Ctrl = 0xC00

c. Note, steps 1-3 only need to happen during crate initialization, step 4 and beyond

can be repeated any number of times to change settings between runs

5. General Trigger configuration

a. Write Trigger.Ctrl the desired pattern for the subsystems desired to be used in the

trigger.

b. Configure each of the subsystems desired to be used as defined in (a). That is,

configure the subsystem deskew delays and coincidence widths on the BCal, FCal,

and SSGenPattern peripherals if they are to be used.

6. Trigger bit configuration

a. For disabled TriggerBits, set Trigbit[].Ctrl = 0. For enabled Trigbits, set Trigbit[].Ctrl to

enable the logic elements desired for coincidence to create a trigger. The remain lines are

for enabled TriggerBits…

28 February 2013 42

b. Set Trigbit[].TrigOutCtrl to desired latency and width (these are probably identical to all

trigbits)

c. Now configure the thresholds and parameters for all parts of used trigger logic

7. Starting the run

a. To begin the trigger data flow, Assert SYNC for a minimum of 4us, then release.

Data will begin to flow from the FADC->CTP->SSP->GTP on the release of SYNC.

b. Wait for at least the trigger latency time after SYNC was released (a few us)

c. Check each enabled Serdes[].Status bit 14 to see that RXSRCRDYN = 0 indicating

trigger data is flowing. If it is a 1, trace back the links to find where the data begins

to flow to find the culprit modules. Restart step 7 or earlier depending on the

action taken to correct if there was an issue.

d. Check each enabled Trigbit[].Status bit 0 to verify it is 0, if it is a 1 then the latency

check has failed and delays/latency requirements likely need to be adjusted

e. At this point the Trigbit[].Scalers should be firing at expected physics rates. The TS

input counters should also be firing…Release the triggers (in the TS of coarse)!

28 February 2013 43

6 – Ethernet Interface to GTP
 The Ethernet interface is the main path to be used for communication with the GTP. This

interface provides the ability to: perform firmware updates, read/write registers, and retrieve buffered

copies of scalers. Each of these will be discussed in detail.

6.1 Firmware updates
 Firmware for the GTP follows a few steps:

1. After Quartus compilation, use the convert programming files to generate a 128Mbit

GTP.pof file from the compiler generated GTP.sof

2. Run ‘GTP_build_rbf.sh’ to convert the GTP.pof file to GTP.rbf. Note that this .rbf file is

slightly different from what you get if you convert the GTP.sof to GTP.rbf in the file

converter…This is a critical different so these instructions must be followed!

3. The GTP.rbf generated in step 2 is now copied to the GTP Linux file system. Use the

command: ‘scp ./GTP.rbf root@dagtp1:~’

4. ssh into the GTP, e.g. ‘ssh root@dagtp1’

5. In the root home directory (where the GTP.rbf file was uploaded) run the command:

‘./gtp_burn GTP.rbf’

This script will copy the GTP.rbf file to the FPGA flash memory. A simple program should

be created at some point to do a file comparision between GTP.rbf and /dev/mtdblock5 to

verify and reboot the FPGA. Currently a power cycle should be issued to force the GTP to

reload the firmware (accessible register do exist to reboot the FPGA, but need to be

tested!)

6.2 Register & Scalers Accesses
 The GTP runs a TCP based socket server that defines several messages to access registers and

scalers. Please refer to the CrateMsgClient.h file for a ROOT based version of the client that provides a

good example that can easily be change to run under Linux with ‘stdc’ libraries. The client establishes a

connect that is intended to remain open to issue request. The main protocol features are

reading/writing single registers or blocks of registers and reading scalers.

28 February 2013 44

7 - Power Supply and Current Consumption

8 - VXS Pinout Table

VXS Port 15 13 11 9 7 5 3 1

RX0

TX0

RX1

TX1

RX2

TX2

RX3

TX3

SCL Busy Busy Busy Busy Busy Busy Busy Busy

SDA LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp

VXS Port 2 4 6 8 10 12 14 16

RX0

TX0

RX1

TX1

RX2

TX2

RX3

TX3

SCL Busy Busy Busy Busy Busy Busy Busy Busy

SDA LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp LinkUp

VXS Port 17 18 B1 B2 B3 B4

RX0 Trig 1 Clock

TX0

RX1 Trig 2

TX1 TI GTP RX

RX2 Sync

TX2

RX3 TI Busy

TX3 TI GTP TX

SCL SCL* TI_SCL

SDA SDA* TI_SDA

SSP SSP SSP SSP

Diff Pair*

SSP SSP SSP SSP SSP SSP SSP SSP

SSP SSP SSP SSP

PP16

PP1 PP2 PP4 PP6 PP8 PP10 PP12 PP14

PP4 PP6 PP8 PP10 PP12 PP14

PP2

PP3

PP5

PP9

PP3

PP7

PP1

PP5

PP13

PP15

PP11 PP9

PP13

PP7

PP11

