

MPD Specifications

Author: Paolo Musico
Paolo.Musico@ge.infn.it

Rev. 2.5
October 15, 2018

Revision History

Rev. Date Author Description
1.0 28/9/12 Paolo Musico First revision, integrates “MPD FPGA

Specifications” v.3.0
2.0 3/6/14 Paolo Musico Include MPD 4.0 and new VME interface and

memory map
2.1 10/11/15 Paolo Musico Added Optical Fiber inteface
2.2 24/7/16 Paolo Musico Added data format specifications
2.3 13/10/16 Paolo Musico Added remote configuration
2.4 11/12/17 Paolo Musico Added registers to read output fifo counters
2.5 15/10/18 Paolo Musico Swapped EVB loops

Added timeout in EVB to avoid deadlock
Implemented 15 channels only
Added I2C enable feature to read back APV
registers

www.ge.infn.it/~musico Rev 2.4 ii

Contents

MPD Specifications i
Introduction 1
Main Features 2

Clocking 4
Front Panel 4
J33, … , J40: LEMO I/O level selectors for rev 3.0 only 6
New features from October 2018 6

VME Usage 8
Geographical addressing and A24 Base Address 8
A24 Space 9

ADS5281 (ADCs) configuration registers 14
I2C Controller Registers 14
Histogrammer registers and memory 15
APV Acquisition control registers and FIFOs 16
Pedestals and Thresholds RAMs 18
Trigger Time FIFO 20
SDRAM Chip Direct Access 20
SDRAM output FIFO 20

Fiber interface 21
FIR filters 22
Implementation 23

FPGA BLOCK DIAGRAM in VME mode 23
TRIGGER GENERATOR MODULE 23
CHANNEL PROCESSOR MODULE 24
EVENT BUILDER MODULE 26
SDRAM FIFO INTERFACE MODULE 29
REMOTE CONFIGURATION MODULE 31

EPCS Interface 31
Remote Update Interface 31

References 33

Introduction

The MPD (Multi Purpose Digitizer) Board has been designed to completely handle up
to 16 APV front-end cards, reading out the corresponding analog data streams and
transmitting both the control and configuration signals.
After the A/D conversion the input signals can be conditioned by means of 16-tap FIR
filters (one each channel).
Thanks to the use of a large FPGA and abundant on board resources, its use is not
limited only to handle the APV25 in the Jlab SBS scenario, but can be arranged also
for other purposes.
Here we specify the functionalities of the board in release 3.0 and 4.0.
Release 4.0 has been developed to avoid the use of expensive and not easily
procurable HDMI-B cables, initially adopted for the differential input analog signals.
The board has been implemented in VME 6U x 160 mm format, as seen in fig. 1.

Fig. 1 MPD rev 3.0 on the left, MPD rev 4.0 on the right

www.ge.infn.it/~musico Rev 2.5 2 of 33

Main Features

The two versions of MPDs block diagram are represented in fig 2 and fig. 3.

Fig. 2 The MPD rev 3.0 block diagram

Fig. 3 The MPD rev 4.0 block diagram

www.ge.infn.it/~musico Rev 2.5 3 of 33

The core of the board is an Altera ARRIA GX FPGA: EP1AGX50DF780C6N in rev
3.0 and a larger EP1AGX60DF780C6N in rev 4.0 (20% more resources).
The FPGA will handle:

 VME interface (VME64x with VXS extension and Jlab custom multiblock

transfer).
 ADS5281 interfacing (2 x 8 channels, up to 50 MHz (40 MHz typical), 12 bit

ADC, differential inputs, 2 Vpp, with DDR serial interface @ 480 Mbit/s).
 I2C protocol for on-board devices and APV25 configuration.
 APV25 triggering.
 Coaxial front panel I/O with configurable levels (LVTTL – NIM).
 Large memory buffer implemented with external DDR SDram (2 x Micron

MT46V64M8: 128 M x 8 bits in rev 3.0 and 1 x Micron MT47H128M8 in rev
4.0)

 Large Flash memory buffer implemented with an external device in rev 3.0,
replaced by a micro SD-Card interface in v 4.0

 Ethernet 10-100 PHY.
 High speed optical protocol using SFP transceiver.
 Low speed USB interfacein rev 3.0, dropped in rev 4.0.
 Remote reconfiguration.
 User configuration switches, LEDs, ...
 Expansion PMC connectors in rev 4.0.

Rev 4.0 board introduces also some enhancements to improve S/N ratio on the
converted data.
Since some rev 3.0 boards are around, FPGA firmware will be maintained for both
HW releases, giving to the user the same programmer model.

Since all the required power supply voltages are generated on board starting from a
single +5 V, the use of a VME crate is not mandatory.
A user can also implement a table top or “satellite” system using Ethernet and/or
optical transmission channels, collecting the data through standard network
components.
In this case (not developed yet) a System On a Chip (SOC) must be implemented,
including soft-core microprocessor and high level Operating System (OS) to handle
all the data transactions on the network by embedded custom software.

The board is designed to fit in a VME-64x VXS crate. For large availabiliy of
standard VME-32 and 64x systems the board will be provided with the VXS
connector not mounted. So the board will fit in a VME-64x crate without any
problem.
If the user want to use a standard VME-32 crate the front panel has to be removed,
since the guide pins will not fit. Custom VME32 front panel design could be an
option.
In case of using VME32 crate some care have to be paid manually assigning the board
base address (see later).

The ADC clock phase can be adjusted to compensate cable delays, using DELAY25
component available from CERN. In any case the delay chip must be configured.

www.ge.infn.it/~musico Rev 2.5 4 of 33

Clocking

In rev 3.0 a local 100 MHz oscillator provides the main signal to the FPGA, which
generates all the needed clocks by means of internal PLLs.

In rev 4.0 the local oscillator frequency will be reduced to 40 MHz, for front panel
clock compatibility. This LEMO-00 input (40 MHz, LVTTL, 50 terminated) can be
used to synchronize the board with an external system.

In addition both revisions can generate the needed clocks from a backplane signal,
coming from VXS connector.

The choice between local and front panel clock will be done manually using two user
switches as in the following table.

SW1.1 SW1.2 Clock Source

0 (ON) 0 (ON) CLK_IN_P0 (40/100 MHz, PLL generated from 62.5 MHz)

0 (ON) 1 (OFF) MASTER_CLOCK2 (40 MHz, front panel clock) rev 4.0 only

1 (OFF) 0 (ON) MASTER_CLOCK (40/100 MHz, local oscillator)

1 (OFF) 1 (OFF) MASTER_CLOCK (40/100 MHz, local oscillator) DEFAULT

In the following figure the clocking scheme of MPD v 4.0 is reported.

An additional 62.5 MHz oscillator is present to feed the GXB (high speed serializer)
blocks. To implement Optical Gigabit Ethernet interface this oscillator must be
replaced with frequency of 125.0 MHz (Fox XpressO p/n: FXO-HC736R-125).

Front Panel

The front panel presents the following connectors and leds (from top to bottom):

 4 micro status LEDS
 GND point
 Optical transceiver: as standalone interface and data transfer

www.ge.infn.it/~musico Rev 2.5 5 of 33

 Mini USB (in rev 3.0): as standalone interface
 10/100 Ethernet RJ45: as standalone interface
 2 Input LEMO connectors (4 in rev 3.0): user defined (trigger, clock …)
 2 Output LEMO connectors (4 in rev 3.0): user defined (clock, busy …)
 1 clock input: 40 MHz, LVTTL, 50 terminated, in rev 4.0
 2 x HDMI-A: digital outputs (trigger, clock and I2C) to the APV cards
 4 x HDMI-A (2 x HDMI-B in rev 3.0): analog inputs from APV cards

The 4 leds are available on the upper part of the MPD front panels. The LEDS blink
according to the following table.

Left LED Left-Mid LED Right-Mid LED Right LED
Data access (VME/optical) Trigger to APVs I2C access Optical link UP

Logic levels of the LEMO I/O connectors can be configured as NIM or TTL. In rev
4.0 selection is done via software registers of the FPGA; in rev 3.0 selection depend
on jumpers J33 … J40.

The upper left Input LEMO connector is by default the input of the TRIGGER signal.
The second Input LEMO connector is by default the input of the SYNC signal.
The upper left Output LEMO connector provides by default the BUSY signal.
The second Output LEMO connector provides by default a 40 MHz clock.

The 2 upper most HDMI-A connectors are used to output the APV digital signals
(clock, trigger and I2C); they are generally connected to a backplane (or patch panel)
that distribute the signals to the APV cards.
The lower analog HDMI connectors receive the analog APV signals (4 signals, or
channels for each HDMI-A, 8 for each HDMI-B). In rev 4.0 a special configuration
permit to group up to 5 channels on two of the 4 input HDMI-A connectors; this is
selected by solder jumpers on the MPD.

On the printed board side, are hosted:

 J9: JTAG connector for FPGA programming
 J10: FPGA Flash Prom programming connector (not used)
 J28: +5 V power connector, for stand alone operations
 J43: I2C Debug: SCL, SDA, GND
 J45, J46, J47, J48: GND connection for testing probes
 J33, … , J40: LEMO I/O level selectors (rev 3.0 only)
 J1005: front panel FASTON connected to GND
 J1009: Geographical address upper bit selection (for VME32 crate)
 SW1: USER Selection switches
 SW2: FPGA code selector (TBD)
 SW3: Geographic address selector (for VME32 crates) together with the J1009

jumper
 J1006-J1010: HDMI-A digital signals output connectors
 J1007-J1008: HDMI-B analog signals input connectors (rev 3.0 only)
 J2000-J2001, J2004-J2005: HDMI-A analog signals input connectors (rev 4.0

only)

www.ge.infn.it/~musico Rev 2.5 6 of 33

 J2002-J2003, J2006-J2007: connect the 5th backplane channel to ADC for
J2000 and J2004 respectively, as alternaltive to J2009-J2010, J2011-J2012. In
this case the 1st channel on J2001 and J2005 is not connected

 J2009-J2010, J2011-J2012: used to readout 4 channel HDMI-A as alternaltive
to J2002-J2003, J2006-J2007

 Piggyback connectors: PN1-J1, PN3-J3 electrically compatible with PMC
standard (rev 4.0 only)

J33, … , J40: LEMO I/O level selectors for rev 3.0 only

Left picture shows LVTTL IO settings, while right picture shows NIM settings.
Refer to the following table for details.

JUMPER Related IO
J37 Input 0
J40 Input 2
J38 Input 1
J39 Input 3
J33 Output 0
J36 Output 2
J34 Output 1
J35 Output 3

New features from October 2018

In the latest release of FPGA code (starting from October 2018) several new features
have been introduced.
A timeout has been added while waiting for APV data into the Event Builder and the
2 loops of Event Builder have been swapped: refer to Event Builder paragraph for
details.

www.ge.infn.it/~musico Rev 2.5 7 of 33

Event builder data are taken out with or without the SDRAM fifo using all the
possible VME accesses trough the output buffer address space.
To save some resources only 15 channels have been implemented.
The APV front ends configuration registers now can be read back using the I2C bus:
to do this an HW modification is needed.
Two wires must be added on the boards: from U47 pin 5 to J49 pin 3 and from U48
pin 5 to J49 pin 4.
While doing this modification, please take care to verify also some jumpers: J29 and
J30 must be open while J41 and J42 must be closed.
Note that the indicated modifications are mandatory to use FPGA code starting from
October 2018.
Look at the following picture to better understand.

www.ge.infn.it/~musico Rev 2.5 8 of 33

VME Usage

The VME bus is the primary interface adopted by JLab DAQ environment and for this
reason it was the first to be implemented and extensively tested.

The protocol is handled using a custom developed block which implements the
following cycles:

 Single A24 cycles: non privileged and supervisor program and data space,

CR/CSR space. They are all used to access configuration ROM, configuration
registers and access to debug structures.

 Single A32 cycles: non privileged and supervisor program and data space
 Block transfer A24 and A32 cycles: non privileged and supervisor
 MBLT A32 D64 cycles
 2eVME cycles: A32 D64, master/slave terminated
 2eSST cycles: A32 D64, master/slave terminated
 Jlab custom multiboard transfer (TBD)

The VME interface decodes various spaces:

 A24: 256 kB for configuration registers, status registers, parameter and
histogrammer RAMs, debug readout

 A32: output buffer, SDRAM direct access (for debug), test module (for debug)

A24 base address upper bits are stored in the BaseAddressRegister, which defaults to
Geographical Address.
A32 base addresses are stored into configuration registers.

Geographical addressing and A24 Base Address

Using a Vme64x crate the GA lines are connected to the corresponding lines on the
backplane. In a VME32 crate the GA lines must be set using a rotary switch (SW3)
for GA[3:0] and a solder jumper (J1009) for GA[4]. Using a VME-64x crate SW3
must be placed in position 0 and J1009 must be left open.
To ensure this compatibility the GAP (Geographical Address Parity) line is never
checked.

A24 Base Address register (mapped at A24BaseAddress+0x180) default value (at
powerup or after a reset) is:

7..3 2..0

GA[4:0] 0 A24_BAR

www.ge.infn.it/~musico Rev 2.5 9 of 33

A24 Base Address is made up as follows:

23..18 17..0

A42_BAR[7:2] 0 A24BaseAddress

The following table summarizes the corrispondence between the VME64
Geographical address (slot position) or VME32 MPD rotary switch and the A24
default base address.

GEO address (slot number)
or rotary switch (VME32)

A24 base address
(with A24_BAR = default)

1 0x080000
2 0x100000
3 0x180000
4 0x200000
5 0x280000
… …
19 0x980000
20 0xA00000

A24 Space

In the A24 address space as previously defined, the following devices will be
decoded, adding the Offset field to A24BaseAddress:

Offset Length

(lwords)
Description Value - Notes

0x00000 1 MAGIC VALUE 0x43524F4D = ‘CROM’ –
RO

0x00004 1 MANUF_ID 0x00080030 – ReadOnly
CERN manufacturer ID

0x00008 1 BOARD_ID 0x00030904 – ReadOnly
0x0000C 1 REVISION_ID 0x04000005 – ReadOnly

(0x03000004 on v3)
0x00010 1 COMPILE_TIME time_t – ReadOnly

0x00100 1 RESET_REG
0x00104 1 IO_CONFIG
0x00108 1 SAMPLE_PER_EVENT
0x0010C 1 EVENT_PER_BLOCK
0x00110 1 BUSY_THR
0x00114 1 BUSY_THR_LOCAL > BUSY_THR
0x00118 1 READOUT_CONFIG
0x0011C 1 TRIGGER_CONFIG
0x00120 1 TRIGGER_DELAY
0x00124 1 SYNC_PERIOD

www.ge.infn.it/~musico Rev 2.5 10 of 33

0x00128 1 MARKER_CHANNEL
0x0012C 1 CHANNEL_ENABLE
0x00130 1 ZERO_THRESHOLD
0x00134 1 ONE_THRESHOLD
0x00138 8 FIR_COEFFICIENTS

0x00180 1 A24_BAR
0x00184 1 MULTIBOARD_CONFIG TBD
0x00188 1 MULTIBOARD_ADD_LOW TBD
0x0018C 1 MULTIBOARD_ADD_HIGH TBD
0x00190 1 FIBER_STATUS_CTRL
0x00194 1 OBUF_BASE_ADDR 8 MBytes
0x00198 1 SDRAM_BASE_ADDR 8 MBytes
0x0019C 1 SDRAM_BANK 16 banks x 8 MB = 128 MB

0x00200 10 (up to 64) OUTPUT_BUFFER_STATUS
0x00300 1 ADC_CONFIG
0x00380 4 SERIAL MEMORY IF
0x00390 4 REMOTE UPDATE
0x00400 8 I2C_CONFIG

0x01000 2 HISTO0_REGISTERS StatusCtrl & Counter
0x01008 2 HISTO1_REGISTERS StatusCtrl & Counter
0x04000 4K HISTO0_RAM
0x08000 4K HISTO1_RAM

0x10000 16 × 1K CHANNELS_SPACE
0x30000 18 CHANNELS_FLAGS FIFO word count & flags
0x34000 16 × 128 PEDESTAL_RAM
0x36000 16 × 128 THRESHOLD_RAM

Location 0x00000 – 0x00010 are read only identification parameters and can be used
to identify the board.
REVISION_ID holds HW revision ID (3 or 4) in the upper 8 bit and FPGA revision
ID (4 or higher, 5 from October 2018) in the lower 16 bit.
COMPILE_TIME contains the FPGA compile time in time_t format.

Location 0x00100 – 0x0019C are configuration registers.
All locations in the table above can be accessed with both VME and Fiber interface,
except the locations from 0x00180 to 0x0019C accessed only through the VME.

Location 0x0200 – 0x02FC Output Buffer status registers:
 0x0200 EVB_FIFO_WORD_COUNT: Words present in the Event Builder

output FIFO and related flags
{4'h0,OUT_FIFO_FULL_L,EVB_FIFO_FULL_L,EVTCNT_FIFO_FULL_L,
TIME_FIFO_FULL_L, 6'h0, FULL, EMPTY, 4'h0, WORD_COUNT[11:0]}

 0x0204 EVENT_COUNT: Event counted by Event Builder (24 bit)

www.ge.infn.it/~musico Rev 2.5 11 of 33

 0x0208 BLOCK_COUNT: {8’h0, OutputFifoBuffer_BlockCount[7:0], 8’h0,
EventBuilder_BlockCount[7:0]}

 0x020C TRIGGER_COUNT: Number of trigger sent to APVs
 0x0210 MISSED_TRIGGER: Number of trigger received but not sent to

APVs, due to input FIFO congestion
 0x0214 INCOMING_TRIGGER: Number of trigger received
 0x0218 SDRAM_FIFO_WR_ADDR: {SDR_OK, 6’h0, WR_ADDR[24:0]}
 0x021C SDRAM_FIFO_RD_ADDR: {SDR_OK, 6’h0, RD_ADDR[24:0]}
 0x0220 SDRAM_FLAG_WC: {OVERRUN, 6’h0, WORD_COUNT[24:0]}
 0x0224 OBUF_STATUS: {FULL, EMPTY, 17’h0, WORD_COUNT[12:0]}
 0x0228 Latched_Full: {APV_FIFO_FULL_L, PROCESS_FIFO_FULL_L}
 0x22C OutputFifo counters and flags: {Full, Empty, 10’h0, BlockWordCount}

SDRAM* registers are intended to be used for debug.
SDR_OK = 1 means that the SDRAM is working properly.
If OVERRUN = 1 everything must be restarted.

xxx_FULL_L are the FIFO full flags latched: if ‘1’ at least one time the
corresponding fifo went full. They will be cleared only with a restart of the
DAQ.

MULTIBOARD CONFIGURATION: To Be Defined.

FIBER STATUS & CONTROL:

 [0] = Fiber Disable (1 = disabled)
 [1] = SFP transmit disable (1 = disabled)
 [2] = Spare
 [3] = Fiber Reset (1 = reset)
 [11:4] = Fiber Error Count (Read Only)
 [12] = Fiber Frame Error (Read Only)
 [13] = Fiber Hard Error (Read Only)
 [14] = SFP Present – active low (Read Only)
 [15] = SFP Loss of Signal (Read Only)
 [30:16] = Spare
 [31] = Fiber Channel UP (Read Only)

Note that after power up or reset, the fiber interface is enabled by default: to access
board resources with VME it must be disabled setting to 1 bit 0 (and also bit 1) of
FIBER_STATUS_CTRLregister.

OUTPUT BUFFER BASE ADDRESS:
Address for A32 accesses of the Output FIFO Data Buffer. Address space is 8
Mbytes. The value written here must be the effective base address shifted right by 2
positions.

SDRAM BASE ADDRESS:
Address for A32 accesses of the DDR2 SDRAM. Address space is 8 Mbytes. Used
for debug only. The value written here must be the effective base address shifted right
by 2 positions.

www.ge.infn.it/~musico Rev 2.5 12 of 33

SDRAM BANK:
Bank index (from 0 to 15) for A32 accesses of the DDR2 SDRAM. Used for debug
only.

RESET_REG:
A write operation with data = 0x1 will cause a complete reset of the board.

I/O CONFIG:
Used in MPD v 4.0 only. In MPD 3.0 the I/O levels are set by jumpers.
IO_CONFIG[1:0] set the level for the front panel Input lines: 1 = NIM, 0 = LVTTL
IO_CONFIG[3:2] set the level for the front panel Output lines: 1 = NIM, 0 = LVTTL
By default they are set to 0, enabling LVTTL interface.
IO_CONFIG[8] enables a test module useful for fiber interface testing (1 = enabled)
IO_CONFIG[23:16] set the period of the test module data packet generator

SAMPLE PER EVENT:
Number of APV samples for each event. Valid range from 1 to 31.
It must be set equal to MAX TRIG OUT (see TRIGGER CONFIG register) or MAX
TRIG OUT × 3 if APV is configured to take out 3 frames each incoming trigger.

EVENT PER BLOCK:
Number of event to be put in each data block. From 1 to 255.

BUSY THRESHOLD:
If SDRAM_FIFO_WORD_COUNT > BUSY_THRESHOLD and
BUSY_THRESHOLD > 0 the BUSY signal is raised.

BUSY THRESHOLD LOCAL:
If SDRAM_FIFO_WORD_COUNT > BUSY_THRESHOLD_LOCAL and
BUSY_THRESHOLD_LOCAL > 0 stop sending trigger to APVs.

READOUT CONFIG:

 [2:0] = DAQ MODE:
o 0 = disabled;
o 1 = APV frame decoding;
o 2 = fill up FIFO once with ADC samples;
o 3 = processed mode (baseline and pedestal subtraction, threshold cut)

 [4] = FIR Enable
 [5] = select Event Builder time clock: 0 = APV clock, 1 = clock from P0
 [6] = Disable EventBuilder deadlock on faulty channels (1 = disabled)
 [9] = Enable I2C on HDMI cable 0 (1 = enabled J1006, lower)
 [10] = Enable I2C on HDMI cable 1 (1 = enabled J1010, upper)
 [13] = Event Builder Packs 24 bit Data to 32 bit on 64 bit boundary (TBD)
 [14] = Data output from SDRAM Fifo in 64 bit format (MBLT, 2eVME or

2eSST accesses only). Must be 0 if Fiber interface is enabled
 [15] = Use SDRAM Fifo for Event Builder output
 [27:16] = COMMON OFFSET to be added to all APV data
 [28] = Enable Baseline Subtraction
 [30] = Enable Event Building
 [31] = All FIFO Clear

www.ge.infn.it/~musico Rev 2.5 13 of 33

TRIGGER CONFIG:

 [7:0] = RESET LATENCY: issue trigger pulses only after this latency once
enabled

 [11:8] = MAX TRIG OUT: number of trig pulses that have to be sent to APVs
every incoming pulse, every 3 clock cycles (minimum spaced)

 [14:12] = TRIG MODE:
o 0 = disabled;
o 1 = generates 1 APV trigger every input rising edge;
o 2 = generates MAX TRIG OUT APV trigger (100) every input rising

edge;
o 3 = generates a Calibration command (110) followed by MAX TRIG

OUT Trigger (100) pulse after given latency (see bit 31..24)
 [15] = Spare: Not used in this release
 [16] = Enable SYNC from P0 VXS connector
 [17] = Enable SYNC from front panel INPUT[1] line
 [18] SOFTWARE TRIGGER: a 100 pulse is generated to APVs every rising

edge of this bit
 [19] SOFTWARE CLEAR: a 101 pulse is generated to APVs every rising

edge of this bit
 [20] = TDC selector for trgger time measurement: 0 = low res, 1 = high res
 [21] = Enable TRIG1 line on P0 VXS connector as trigger
 [22] = Enable TRIG2 line on P0 VXS connector as trigger
 [23] = Enable front panel INPUT[0] line as trigger
 [31:24] = Latency (in clock cycles) between calibration command and

successive trigger pulse (TRIG MODE = 3). Effective latency is this number +
4.

TRIGGER_DELAY: value 0 to 31; clock periods delay added to the trigger output
signal. One clock period is always added to this number for resinchronization.

SYNC_PERIOD: number of clock periods between succeccive APV sync pulses. In 40
MHz mode this number should be 34. One clock period is always added to this
number. Used only for checking SYNC pulse presence while there are no APV data
frames (i.e. no triggered data are sent out).

MARKER_CHANNEL: if < 128 the given channel index is always set to the maximum
(0xFFF) in the APV frame. Useful for debugging the channel mapping scheme. Set to
0xFF if not used.

CHANNEL_ENABLE: enable mask for all channels: Enable[0] = 1 enables channel 0
and so on. From October 2018, since only 15 channels are implemented, Enable[15]
MUST be set to 0.

ZERO_THRESHOLD: a value below this is considered as logic ‘0’ in the APV frame.

ONE_THRESHOLD: a value above this is considered as logic ‘1’ in the APV frame.

www.ge.infn.it/~musico Rev 2.5 14 of 33

FIR_COEFFICIENTS: 8 32-bit registers holding up to 16 16-bit 2-complement integer
coefficeints with the following format: {FIR_COEFF_1, FIR_COEFF_0} and so on.
The coefficients are multiplied by 213.

SERIAL MEMORY IF & REMOTE UPDATE: 4 + 4 32-bit registers intended to be used for
the remote update process, including the reprogramming of the serial flash
(EPCS128).

ADS5281 (ADCs) configuration registers

31 30 29..24 23..0

Start
ADC1

Start
ADC0

N.U. Data ADC_CONFIG (W)

The bits 23..0 of ADC_CONFIG (at address A24BaseOffset+0x00300) contain the
value to be loaded into the selected ADS5281. Bit 30 of ADC_CONFIG starts the
serialization into ADC0 (U12) connected to the lower 8 analog channels of the MPDs,
bit 31 starts the serialization into ADC1 (U31) related to upper 8 analog channels.
The Data correspond to the ADC internal address (bits 23-16) and the corresponding
value to set (bits 15-0), according to the Table 4 (Summary of the functions supported
by the serial interface) of the ADS5281 rev.1 datasheet (see reference 9).

31 30 29..24 23..0

Status
ADC1

Status
ADC0

N.U. Data Readback ADC_CONFIG (R)

Reading ADC_CONFIG returns the previously loaded data in address bit 23..0. Bit
30 and 31 reports the status of the serialization process: 1 = Serialization in progress,
0 = Done,

I2C Controller Registers

31..8 7..0

N.U. Clock Prescaler low I2C_CONFIG + 0x00 (RW)

N.U. Clock Prescaler high I2C_CONFIG + 0x04 (RW)

N.U. Control Register I2C_CONFIG + 0x08 (RW)

N.U. Transmit Register I2C_CONFIG + 0x0C (W)

N.U. Receive Register I2C_CONFIG + 0x0C (R)

N.U. Command Register I2C_CONFIG + 0x10 (W)

N.U. Status Register I2C_CONFIG + 0x10 (R)

N.U. ApvReset I2C_CONFIG + 0x1C (RW)

www.ge.infn.it/~musico Rev 2.5 15 of 33

For detailed informations see the I2C - Master Core Specification v 0.9 (see reference
7).
The I2C devices handled by MPD are the following:

Device 7-bit I2C Address range Notes
APV25 0x20..0x3F

DELAY25 0x38..0x3F Ref. 10
LM95235 0x4C fSCL > 10 KHz

SFP E2PROM 0x50..0x57
DS2482-100 1-WIRE 0x18 Not used
DS2482-100 1-WIRE 0x19 Not used

The ApvReset register bit 0 is negated and then connected to the APV_RESET HW
line.

Histogrammer registers and memory

For modularity, histogramming of 16 channels has been divided in 2 independent
blocks.
The first block handles channels from 0 to 7 and the second one handles channels
from 8 to 15.
The 2 blocks can run in parallel, thus making 2 histograms each time.

To make an histogram:

 clear the memory (write 0 to all the 4096 words);
 set histogramming channel and Process bit in the control register;
 wait for a given time;
 clear the Process bit in the control register;
 read the memory;
 eventually read the word counter.

First block histogramming memory:

31..0

Histo Data ch 0..7 HISTO0_RAM ÷ HISTO0_RAM + 0x3FFC (RW)

First block control and status registers:

31..8 7 6..3 2..0

N.U. Process N.U. Channel select 0..7 HISTO0_REGISTERS (W)

31 30..16 15..0

Running N.U. Control Register Read Back HISTO0_REGISTERS (R)

First block measurements counter:

www.ge.infn.it/~musico Rev 2.5 16 of 33

31..0

Histo Count HISTO0_REGISTERS + 0x4 (R)

Second block histogramming memory:

31..0

Histo Data ch 8..15 HISTO1_RAM ÷ HISTO1_RAM + 0x3FFC (RW)

Second block control and status registers:

31..8 7 6..3 2..0

N.U. Process N.U. Channel select 8..15 HISTO1_REGISTERS (W)

31 30..16 15..0

Running N.U. Control Register Read Back HISTO1_REGISTERS (R)

Second block measurements counter:

31..0

Histo Count HISTO1_REGISTERS + 0x4 (R)

APV Acquisition control registers and FIFOs

APV channels data FIFO and related word counter:

31..16 15..0

0 APV Data ch 0 (CHANNELS_SPACE + 0x0000) (R)

0 APV Data ch 1 (CHANNELS_SPACE + 0x2000) (R)

0 APV Data ch 2 (CHANNELS_SPACE + 0x4000) (R)

0 APV Data ch 3 (CHANNELS_SPACE + 0x6000) (R)

0 APV Data ch 4 (CHANNELS_SPACE + 0x8000) (R)

0 APV Data ch 5 (CHANNELS_SPACE + 0xA000) (R)

0 APV Data ch 6 (CHANNELS_SPACE + 0xC000) (R)

0 APV Data ch 7 (CHANNELS_SPACE + 0xE000) (R)

0 APV Data ch 8 (CHANNELS_SPACE + 0x10000) (R)

www.ge.infn.it/~musico Rev 2.5 17 of 33

0 APV Data ch 9 (CHANNELS_SPACE + 0x12000) (R)

0 APV Data ch 10 (CHANNELS_SPACE + 0x14000) (R)

0 APV Data ch 11 (CHANNELS_SPACE + 0x16000) (R)

0 APV Data ch 12 (CHANNELS_SPACE + 0x18000) (R)

0 APV Data ch 13 (CHANNELS_SPACE + 0x1A000) (R)

0 APV Data ch 14 (CHANNELS_SPACE + 0x1C000) (R)

0 APV Data ch 15 (CHANNELS_SPACE + 0x1E000) (R)

31..16 15..0

0 Used Word ch 0 (CHANNELS_FLAGS) (R)

0 Used Word ch 1 (CHANNELS_FLAGS + 0x04) (R)

0 Used Word ch 2 (CHANNELS_FLAGS + 0x08) (R)

0 Used Word ch 3 (CHANNELS_FLAGS + 0x0C) (R)

0 Used Word ch 4 (CHANNELS_FLAGS + 0x10) (R)

0 Used Word ch 5 (CHANNELS_FLAGS + 0x14) (R)

0 Used Word ch 6 (CHANNELS_FLAGS + 0x18) (R)

0 Used Word ch 7 (CHANNELS_FLAGS + 0x1C) (R)

0 Used Word ch 8 (CHANNELS_FLAGS + 0x20) (R)

0 Used Word ch 9 (CHANNELS_FLAGS + 0x24) (R)

0 Used Word ch 10 (CHANNELS_FLAGS + 0x28) (R)

0 Used Word ch 11 (CHANNELS_FLAGS + 0x2C) (R)

0 Used Word ch 12 (CHANNELS_FLAGS + 0x30) (R)

0 Used Word ch 13 (CHANNELS_FLAGS + 0x34) (R)

0 Used Word ch 14 (CHANNELS_FLAGS + 0x38) (R)

0 Used Word ch 15 (CHANNELS_FLAGS + 0x3C) (R)

All APV Data ch x FIFO can be accessed from the given address for 1K words, to
permit block transfers with auto increment on address lines.
MSB of the Used Word registers is the corresponding FIFO Full flag, thus avoiding
that if channel FIFO is full the corresponding Used Word is 0. In this release the FIFO
size is 1024 words

If DAQ MODE is 0x1, the readout data come form the APV frame decoder.
If DAQ MODE is 0x3, the readout data come form the baseline subtractor and
threshold cutter.

www.ge.infn.it/~musico Rev 2.5 18 of 33

Used Words and FIFO flags behave in the same way.

If Event Building is enabled and the output SDRAM FIFO is not used, all the data
must be read from Channel 0 addresses (Data FIFO, Used words and flags). In this
case Used Words location contains the following:
USED_WORDS[31:16] = Event Counter; USED_WORDS[15:0] = FIFO word count

Apv Readout Control and Status Registers:

31..16 15..0

FIFO FULL Flag FIFO EMPTY Flag CHANNELS_FLAGS + 0x40 (R)

SYNCED ERROR CHANNELS_FLAGS + 0x44 (R)

FIFO EMPTY Flag & FIFO Full Flag = corresponding FIFO flag on READ side
ERROR = FIFO Full Flag on WRITE side
SYNCED = channel has sync pulses present

All the preceding APV acquisition data space is used only for debug, since it is not
mapped to a high speed data transfer space.

Pedestals and Thresholds RAMs

Each RAM contains 128 12-bit pedestal values to be subtracted from the incoming
APV data and threshold values to be compared with processed data.
Before pedestal subtraction the COMMON OFFSET value is added to avoid negative
numbers.
These memories are dual port RAM shared with the channel processor FSMs. To read
and write from these RAMs the corresponding channel must be disabled (ENABLE
register bit cleared).
If Pedestal value is 0xFFF the corresponding APV channel is not used in baseline
computation.
If Threshold value is 0xFFF the corresponding APV channel is always discarded from
the output data set.

31..12 11..0

N.U. Pedestal APV 0 PEDESTAL_RAM ÷
PEDESTAL_RAM + 0x1FC) (RW)

N.U. Pedestal APV 1 (PEDESTAL_RAM + 0x200) ÷
(PEDESTAL_RAM + 0x3FC) (RW)

N.U. Pedestal APV 2 (PEDESTAL_RAM + 0x400) ÷
(PEDESTAL_RAM + 0x5FC) (RW))

N.U. Pedestal APV 3 (PEDESTAL_RAM + 0x600) ÷
(PEDESTAL_RAM + 0x7FC) (RW))

N.U. Pedestal APV 4 (PEDESTAL_RAM + 0x800) ÷
(PEDESTAL_RAM + 0x9FC) (RW)

N.U. Pedestal APV 5 (PEDESTAL_RAM + 0xA00) ÷
(PEDESTAL_RAM + 0xBFC) (RW))

www.ge.infn.it/~musico Rev 2.5 19 of 33

N.U. Pedestal APV 6 (PEDESTAL_RAM + 0xC00) ÷
(PEDESTAL_RAM + 0xDFC) (RW))

N.U. Pedestal APV 7 (PEDESTAL_RAM + 0xE00) ÷
(PEDESTAL_RAM + 0xFFC) (RW)

N.U. Pedestal APV 8 (PEDESTAL_RAM + 0x1000) ÷
(PEDESTAL_RAM + 0x11FC) (RW)

N.U. Pedestal APV 9 (PEDESTAL_RAM + 0x1200) ÷
(PEDESTAL_RAM + 0x13FC) (RW)

N.U. Pedestal APV 10 (PEDESTAL_RAM + 0x1400) ÷
(PEDESTAL_RAM + 0x15FC) (RW)

N.U. Pedestal APV 11 (PEDESTAL_RAM + 0x1600) ÷
(PEDESTAL_RAM + 0x17FC) (RW)

N.U. Pedestal APV 12 (PEDESTAL_RAM + 0x1800) ÷
(PEDESTAL_RAM + 0x19FC) (RW)

N.U. Pedestal APV 13 (PEDESTAL_RAM + 0x1A00) ÷
(PEDESTAL_RAM + 0x1BFC) (RW)

N.U. Pedestal APV 14 (PEDESTAL_RAM + 0x1C00) ÷
(PEDESTAL_RAM + 0x1DFC) (RW)

N.U. Pedestal APV 15 (PEDESTAL_RAM + 0x1E00) ÷
(PEDESTAL_RAM + 0x1FFC) (RW)

31..12 11..0

N.U. Threshold APV 0 THRESHOLD_RAM ÷
THRESHOLD_RAM + 0x1FC) (RW)

N.U. Threshold APV 1 (THRESHOLD_RAM + 0x200) ÷
(THRESHOLD_RAM + 0x3FC) (RW)

N.U. Threshold APV 2 (THRESHOLD_RAM + 0x400) ÷
(THRESHOLD_RAM + 0x5FC) (RW))

N.U. Threshold APV 3 (THRESHOLD_RAM + 0x600) ÷
(THRESHOLD_RAM + 0x7FC) (RW))

N.U. Threshold APV 4 (THRESHOLD_RAM + 0x800) ÷
(THRESHOLD_RAM + 0x9FC) (RW)

N.U. Threshold APV 5 (THRESHOLD_RAM + 0xA00) ÷
(THRESHOLD_RAM + 0xBFC) (RW))

N.U. Threshold APV 6 (THRESHOLD_RAM + 0xC00) ÷
(THRESHOLD_RAM + 0xDFC) (RW))

N.U. Threshold APV 7 (THRESHOLD_RAM + 0xE00) ÷
(THRESHOLD_RAM + 0xFFC) (RW)

N.U. Threshold APV 8 (THRESHOLD_RAM + 0x1000) ÷
(THRESHOLD_RAM + 0x11FC) (RW)

N.U. Threshold APV 9 (THRESHOLD_RAM + 0x1200) ÷
(THRESHOLD_RAM + 0x13FC) (RW)

N.U. Threshold APV 10 (THRESHOLD_RAM + 0x1400) ÷
(THRESHOLD_RAM + 0x15FC) (RW)

N.U. Threshold APV 11 (THRESHOLD_RAM + 0x1600) ÷
(THRESHOLD_RAM + 0x17FC) (RW)

N.U. Threshold APV 12 (THRESHOLD_RAM + 0x1800) ÷
(THRESHOLD_RAM + 0x19FC) (RW)

N.U. Threshold APV 13 (THRESHOLD_RAM + 0x1A00) ÷
(THRESHOLD_RAM + 0x1BFC) (RW)

N.U. Threshold APV 14 (THRESHOLD_RAM + 0x1C00) ÷
(THRESHOLD_RAM + 0x1DFC) (RW)

N.U. Threshold APV 15 (THRESHOLD_RAM + 0x1E00) ÷
(THRESHOLD_RAM + 0x1FFC) (RW)

www.ge.infn.it/~musico Rev 2.5 20 of 33

Trigger Time FIFO

The time between every incoming trigger pulse and the APV clock is measured and
put into this FIFO. There are 2 implementation of TDC: a low resolution which uses
the 240 MHz clock as LSB and a high resolution which is implemented usind a delay
line. The chioce is done with TRIG_GEN_CONFIG[20]: 0 = low resolution, 1 = high
resolution.
The Trigger Time FIFO depth is 1024 word.

31 30 29..8 7..0

FULL EMPTY N.U. Trigger Time CHANNELS_FLAGS + 0x60 (R)

SDRAM Chip Direct Access

DDR2 SDRAM can be directly accessed using any A32D32 VME single and block
cycles for test purposes at the SDRAM_BASE_ADDR for the following 8 Mbytes space.
Setting SDRAM_BANK from 0 to 15 permit to access all the available 128 Mbytes (16
× 8 = 128).
READOUT_CONFIG[15] must be cleared to access these spaces.
To access the SDRAM this way, the user must write in the SDRAM_BASE_ADDR
register the effective starting address (different from 0) shifted right by 2 positions.
This address must not be in conflict with the following Output Buffer Space.

SDRAM output FIFO

This is the main data output channel: it is possible to access it at full speed in any of
the VME A32D32 read cycles or also A32D64 setting READOUT_CONFIG[14] = 1.
Data are valid only if it is enabled (READOUT_CONFIG[15] = 1).
To access the SDRAM FIFO output buffer, the user must write in the
OBUF_BASE_ADDR register the effective starting address (different from 0) shifted
right by 2 positions.
This address must not be in conflict with the preceding SDRAM Direct Access Space.
User must check the corresponding word count and flags before reading the data.

www.ge.infn.it/~musico Rev 2.5 21 of 33

Fiber interface

The fiber optic interface is based on Aurora protocol adapting a single lane 2.5 Gb/s
channel coming from Xilinx LogiCORE (see ref 11, 12).
An additional layer has been devolped (by JLAB people) permitting a simpler access
to the module, implementing a packet exchanging protocol as defined in JLAB
environment.
The MPD with this fiber interface is intended to be used with the SSP module (JLAB
development) as master.

Two data paths are implemented:

 Configuration registers / RAM accesses
 Data readout

The configuration registers / RAM accesses path is a read-write channel that permits
to access all the on-board resources defined here except the 8 registers mapped in the
range 0x180 ÷ 0x19C.
All the resources can be accesses with the same longword addresses:

longword_address = byte_address >> 2

The data readout path is a read only channel connected to the Event Builder output
FIFO.
For testing purposes this channel can also be fed by a packet generator test module,
controlled by IO_CONFIG_REGISTER upper bits.
The module controlling the Event Builder data transfer transmit one block per data
packet, issuing an EndOfPacket signal after the last word sent out.

The fiber interface is enabled by default after power up, thus avoiding the need of
VME accesses to configure it.

www.ge.infn.it/~musico Rev 2.5 22 of 33

FIR filters

The converted analog data, before the processing, can be passed trough a FIR filter in
order to mitigate the effect of the cable response (a sort of equalization).
The filter coefficient are common for all the 16 channels and must be stored in the
corresponding registersstarting from FIR_COEFFICIENTS address. The FIR filters
have to be enabled setting the READOUT CONFIG[4] bit.
The filters are implemented with the classical topology, using resource sharing,
implemeting the scheme shown in the folowing figure.
In the MPD v3 12 taps fir filters are implemented, while in v4 16 taps are present.

www.ge.infn.it/~musico Rev 2.5 23 of 33

Implementation

FPGA BLOCK DIAGRAM in VME mode

Using optical readout the data are pushed from the Event Builder output to the fiber
interface (not shown here).

TRIGGER GENERATOR MODULE

The Trigger Generator Module (TGM) generates pulses on the APV Trigger line.
It has the following inputs:

 Trigger and Fast Reset signals either coming from front panel LEMO
connectors or backplane or software issued (via configuration register writing)

 Trigger Mode bits form Configuration Register
 Reset and Calibration Latency values form Configuration Register
 Number of consecutive trigger form Configuration Register
 Signals form data FIFOs indicating possible congestions

and the following outputs:

 APV Trigger line
 Number of missed trigger (received, but not sent to APVs)
 Busy line

www.ge.infn.it/~musico Rev 2.5 24 of 33

The behaviour can be summarized as follows.

 When TRIG MODE bits change from 0 to something different a ‘101’ pulse is
generated to synchronize all the APVs. A ‘101’ pulse is also generated every
correnponding incoming command (HW or SW).

 If TRIG MODE = 1 a ‘100’ pulse is generated every rising edge of the
corresponding incoming command (HW or SW). Pulses are sent out only if
there is enough space to store at least a complete event in all the Frame
Decoder output FIFOs.
Pulses can be also stopped if the number of words in the DDR2 buffer is
greater than a given value.

 If TRIG MODE = 2 up to 15 ‘100’ pulses are sent to the APVs, as defined.
 TRIG MODE = 3 is a calibration mode. A ‘110’ pulse followed by up to 15

’100’ pulses are sent out. The delay from ‘110’ to ‘100’ is defined at the
inputs.

 The Number of missed trigger is cleared every ‘101’ APV trigger line
sequence and incremented if a trigger pulse can be handled but there is no
space in the FIFO to store data

 The Busy line is activated if there is no space available in the data FIFO and
the Mode bits are different from 0.
The Busy line is also activated if the number of words in the DDR2 buffer is
greater than a given value.

APV Trigger line ‘100’ pulses are generated only after the defined reset latency.

CHANNEL PROCESSOR MODULE

They are 16 (15 from October 2018) identical submodules, arranged in groups of 8 for
modularity with the ADS5281.
Each channels has the following inputs:

 Enable bit from Control Register
 ADC output data stream
 Mode bits from configuration register
 FIFO Clear bit from configuration register
 Thresholds to identify logic ‘1’ and logic ‘0’ within the serial stream
 Pedestal & Threshold values
 Common Offset value
 FIFO read signal

and the following outputs:

 Output data bus to the FIFO
 FIFO flags (empty, full) and number of used words
 FIFO attention signals, to be used by trigger module to avoid sending trigger

out if there is not enough space.

www.ge.infn.it/~musico Rev 2.5 25 of 33

If DAQ MODE = 2 the APV Frame Decoder block store ADC data into the output
FIFO until it is full and restarts only when it is empty.

If DAQ MODE = 1 or 2 data come out from the APV Frame Decoder block, while if
DAQ MODE = 3 data come out from Threshold Cutter block.

The APV Frame Decoder looks for the Frame Header (‘111’) and store 128 ADC data
into its output FIFO together the header itself and a trailer word.
A common offset is added to all 128 data and then the individual pedestal is
subtracted: Output Data[i] = ADC Data[i] + Common Offset – Pedestal[i].
After the header has been identified the 128 values are written into the output FIFO
only if there is enough space to store them.
A counter is always incremented and stored in the trailer word, permitting to identify
missed frames and to realign data (offline).
While the 128 data are being written into the FIFO, the common mode noise is
computed: the data are accumulated (if corresponding pedestal is not 0xFFF) and at
the end the average value is calculated and written into the MEAN FIFO.
If the MEAN FIFO is not empty a complete data set is present and the following
block can start its processing.

The Baseline Subtractor & Threshold Cutter block get data from the preceding stage.
Its operations are:

 Data Out[i] = Data In[i] – Common Mode Noise
 if(Data Out[i] > Threshold[i]) write Data Out[i] to output

FIFO
If Threshold[i] = 0xFFF the channel is not copied to the output (it is masked).
Header & Trailer coming from preceding stage are always copied. An additional
trailer is added for redundancy and easyness identifications of data.
In MPD v3 the output FIFO size is 1024 word, while in v4 is doubled to 2048.

Data formats are reported in the block diagram.

www.ge.infn.it/~musico Rev 2.5 26 of 33

EVENT BUILDER MODULE

This module puts together data coming out from the 16 (15 from October 2018)
Threshold Cutter blocks.
The block diagram and behaviour is reported in the following picture.

www.ge.infn.it/~musico Rev 2.5 27 of 33

The output of the event builder can be read directly or can feed a large FIFO
implemented using the on board 128 Mbytes DDR2 SDRAM.
To read directly clear READOUT_CONFIG[15] (set to 0), while to use the large fifo set
this bit to 1. If the DDR2 SDRAM output FIFO is not used, all the data can be read
from Channel 0 addresses (Data FIFO, Used words and flags), using A24 accesses or
from the Output Buffer address space in any of the permitted VME modes, also 64 bit
2eVME and 2eSST.

www.ge.infn.it/~musico Rev 2.5 28 of 33

DATA FORMATS

The data out from the APV frame decoder can be described by the following BNF
like grammar:

<Apv Frame>: = <APV_HEADER> { <Data> }128 <APV_TRAILER> // always 128 <Data>
<APV_HEADER>: = 1'b0, 3'b111, 8'bApvColumn, 1'bApvError
<Data[12:0]> := ApvData + CommonOffset - Pedestal
<APV_TRAILER> := 1'b0, SampleCount[3:0], FrameCount[7:0]

SampleCount runs from 0 to SAMPLE_PER_EVENT-1.
FrameCount runs from 1 to 255 an then rolls over.

The data out from the baseline subtractor and threshold cutter can be described by the
following BNF like grammar:

<Processed Data> := <HEADER> { <ReducedData> }0-128 <ApvTrailer> <TRAILER>
<HEADER> := 2'b00, 1'b0, BaselineValue[11], 13'b<APV_HEADER>, 4'bApvId
<ReducedData> := 2'b01, <ChannelNumber[6:0]> <X_Data[11:0]>
<ApvTrailer> := 2'b10, 2'b0, Module ID[4:0], SampleCount[3:0], FrameCounter[7:0]
<TRAILER> := 2'b11, BaselineValue[10:0], WordCount[7:0]
<X_Data[11:0]> := Data[12:0] - Baseline[11:0]

The general format of the data out from the event builder before October 2018 is the
following:

BLOCK_HEADER // BlockSizeMax = (EventSizeMax x EventPerBlock) + 2 + Fillers
 EVENT_HEADER // EventSizeMax = (131 x Napv x Nsample) + 4
 TRIGGER_TIME1
 TRIGGER_TIME2
 APV_CH_DATA // Sample 0
 ...
 APV_CH_DATA // Sample 1
 ...
 APV_CH_DATA // Sample N-1
 ...
 EVENT_TRAILER

 EVENT_HEADER
 TRIGGER_TIME1
 TRIGGER_TIME2
 APV_CH_DATA
 ...
 EVENT_TRAILER

 ...

FILLER WORDS (if needed)
BLOCK_TRAILER

The detailed description in BNF like grammar format of the data out from the event
builder is the following:

<Event Builder Data> := <BLOCK_HEADER> { <EVENT> }1 { <FILLER_WORD> }0 <BLOCK_TRAILER>
<EVENT> := <EVENT_HEADER> <TRIGGER_TIME> {<APV_SAMPLE_DATA>}1 <EVENT_TRAILER>
<TRIGGER_TIME> := <TRIGGER_TIME1> <TRIGGER_TIME2>
<APV_SAMPLE_DATA> := {<APV_CHANNEL_DATA>}1-16 // for each sample loop on all enabled channels
<APV_CHANNEL_DATA> := {3'h4, <Processed Data>} // all data coming out from each APV processor
<BLOCK_HEADER> := 3'h0, MODULE_ID[4:0], EVENT_PER_BLOCK[7:0], BLOCK_COUNT[7:0]
<BLOCK_TRAILER> := 3'b1, 1'b0, N_WORDS_IN_BLOCK[19:0]
<EVENT_HEADER> := 3'h2, 1'b0, EVENT_COUNT

www.ge.infn.it/~musico Rev 2.5 29 of 33

<TRIGGER_TIME1> := 3'h3, 1'b0, COARSE_TRIGGER_TIME[39:20]
<TRIGGER_TIME2> := 3'h3, 1'b1, COARSE_TRIGGER_TIME[19:0]
<EVENT_TRAILER> := 3'h5, 1'b0, N_WORDS_IN_EVENT[11:0], FINE_TRIGGER_TIME[7:0]
<FILLER_WORD> := 3'h7, 21'b0

From October 2018 the 2 loops (channels/samples) are swapped to better organize the
data in order to apply a data compression algorithm at higher level (presumably on the
SSP FPGA). The BNF like format is the following.

<Event Builder Data> := <BLOCK_HEADER> { <EVENT> }1 { <FILLER_WORD> }0 <BLOCK_TRAILER>
<EVENT> := <EVENT_HEADER> <TRIGGER_TIME> {<APV_SAMPLE_DATA>}1-16 <EVENT_TRAILER>
<TRIGGER_TIME> := <TRIGGER_TIME1> <TRIGGER_TIME2>
<APV_ SAMPLE _DATA> := {3'h4, <Processed Data>}1-N_Sample // data coming out from each APV processor
<BLOCK_HEADER> := 3'h0, MODULE_ID[4:0], EVENT_PER_BLOCK[7:0], BLOCK_COUNT[7:0]
<BLOCK_TRAILER> := 3'b1, 1'b0, N_WORDS_IN_BLOCK[19:0]
<EVENT_HEADER> := 3'h2, 1'b0, EVENT_COUNT
<TRIGGER_TIME1> := 3'h3, 1'b0, COARSE_TRIGGER_TIME[39:20]
<TRIGGER_TIME2> := 3'h3, 1'b1, COARSE_TRIGGER_TIME[19:0]
<EVENT_TRAILER> := 3'h5, 1'b0, N_WORDS_IN_EVENT[11:0], FINE_TRIGGER_TIME[7:0]
<FILLER_WORD> := 3'h7, 21'b0

SDRAM FIFO INTERFACE MODULE

The output of the event builder can feed a large FIFO implemented using the on board
128 Mbytes DDR2 SDRAM.
This module is quite complicated to guarantee a good througput and have flexibility
in 32/64 bit readout.
The data coming form the Event Builder are arranged on a 32 bit bounduary and then
written into the SDRAM every 30 ns. This limits the bandwidth of the system!
Then the data are extracted from the SDRAM (every 20 ns), eventually arranged in 64
bit, and put in an output FIFO, needed for speedup the readout.
The output FIFO is directly connected to the VME interface and can be accessed in
any of the supported modes. Using SST320 a 64 bit word is extracted from the output
FIFO every 30 ns (264 MB/s). With SST267 every 40 ns (225 MB/s).
If the Fiber interface is used, Event Builder data goes directly to the output channel.

www.ge.infn.it/~musico Rev 2.5 30 of 33

www.ge.infn.it/~musico Rev 2.5 31 of 33

REMOTE CONFIGURATION MODULE

The user can write a second image of the FPGA firmware in the serial flash device
(EPCS) and trigger a reconfiguration switching to new code.
There are two separate submodules accessible from VME bus only: EPCS interface
and remote update.
To enable the remote update feature a change in the board jumper setting is
mandatory:

Function MSEL0 MSEL1
Active Serial (default) 1 (J30 closed, J42 open) 0 (J29 closed, J41 open)
Remote system update 0 (J30 open, J42 closed) 1 (J29 open, J41 closed)

EPCS Interface

For an EP1AGX50 or EP1AGX60 the configuration data size = 16951824 bit =
2118978 bytes (0x205542)
Factory image loaded from sector 0: addr = 0
Application image loaded from sector 12: addr = 0x300000
Free for other use (i.e. NIOS II accesses) from sector 24: addr = 0x600000
The EPCS interface uses 2 registers:
WRITE OPERATIONS:
ADDR = 0x380 --> Data Register: {ASMI_ADDR[23:0], ASMI_DATAIN[7:0]}
ADDR = 0x384 --> control register
 CtrlRegister[2:0] = 1: READ ID (EPCS128 returns 0x18)
 CtrlRegister[2:0] = 2: BYTE READ
 CtrlRegister[2:0] = 3: BYTE WRITE
 CtrlRegister[2:0] = 4: SECTOR ERASE (0, 0x40000, 0x80000, ...)
 CtrlRegister[2:0] = 5: READ STATUS
 CtrlRegister[2:0] = 7: RESET

 READ OPERATIONS:
 ADDR = 0x380: {ASMI_BUSY, ILL_ERASE, ILL_WR, 2'b0, CtrlRegister[2:0],
STATUS[7:0], RDID_OUT[7:0], DATAOUT[7:0]}
Note that ILL_ERASE and ILL_WR are active only for 2 ASMI_CLK cycles and are
not latched.
ASMI_BUSY bit must be checked by software.

Remote Update Interface

The interface is implemented trough 2 registers:
WRITE OPERATIONS:
ADDR = 0x3A0 --> data register: {13'hx, PARAM[2:0], 4'hx, DATAIN[11:0]}
ADDR = 0x3A4 --> control register
 CrtlRegister[0] = READ PARAM
 CrtlRegister[1] = WRITE PARAM
 CrtlRegister[2] = WATCHDOG RESET
 CtrlRegister[6:3] = Not Used

www.ge.infn.it/~musico Rev 2.5 32 of 33

 CrtlRegister[7] = RECONFIGURE

READ OPERATIONS:
ADDR = 0x3A0: {RUPD_BUSY, 7'h0, CtrlRegister[7:0], 4'h0, DATAOUT[11:0]}
RUPD_BUSY bit must be checked by software

Sequence of operations:
Write_Param with PARAM = 0, DATAIN = 4: select configuration reset triggered
from logic array signal
Write_Param with PARAM = 4, DATAIN = PGM[6:0] = 6'h30: select starting
address for application code
Write_Param with PARAM = 5, DATAIN = 1: select application image for update
(altera reccomend to set to 1)
RECONFIGURE

Read_Param with PARAM = 5: returns the current configuration loaded

To enable this mode be sure on the status of the following jumpers: J29 and J30 must
be open while J41 and J42 must be closed.

www.ge.infn.it/~musico Rev 2.5 33 of 33

References

1. ANSI/VITA 1-1994 “American National Standard for VME64”
2. ANSI/VITA 1.1-1997 “American National Standard for VME64 Extensions”
3. ANSI/VITA 23-1998 “American National Standard for VME64 Extensions for

Physics and Other Applications”
4. VITA 1.5-1999 “Draft Standard for Trial Use Approved bi the VITA Standards

Organization for the 2eSST”
5. ANSI/VITA 41.0-2006 “American National Standard for VXS VMEbus

Switched Serial Standard”
6. ALTERA “Arria GX Device Handbook, Volume 1 & 2”
7. OpenCores, “I2C – Master Core Specification”, July 3, 2003, Rev 0.9
8. P. Musico, “VME64x Slave Interface IP Core Specifications”, Dec 1, 2005
9. Texas Instruments, ADS5281 Low power 8-channel, 12-bit, 50 MSPS ADC

with Serialized LVDS interface, web page: http://www.ti.com/product/ads5281
10. DELAY25 web page: http://proj-delay25.web.cern.ch/proj-delay25/delay25_-

_home.htm
11. Xilinx “LogiCORETM IP Aurora 8B/10B v5.3 User Guide”, UG353, Jan 18

2012
12. Xilinx “LogiCORE IP Aurora 8B/10B v5.3”, DS637, Jan 18 2012
13. https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
14. https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
15. ALTERA "Active Serial Memory Interface (ALTASMI_PARALLEL)

Megafunction User Guide"
16. ALTERA "ALTREMOTE_UPDATE Megafunction"

