
Version
1.1
jefferson lab
Data Acquisition Group
JEventViewer

 User’s Guide

Jefferson Lab Data acquisition group
JEventViewer User’s Guide
Carl Timmer

timmer@jlab.org
3-Feb-2015
(Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave
Newport News, VA 23606
Phone 757.269.7365 • Fax 757.269.6248
Table of Contents

i1.
Evio Event Viewing

ii1.1
Features

42.
File Data Viewing

52.1
Searching

52.1.1
By Value

52.1.2
By Location

52.1.3
By Page

62.1.4
By Evio Block Header

62.1.5
By Evio Event

62.1.6
By Evio Faults

Section

1
1. Evio Event Viewing
This manual describes a graphical user interface for looking at EVIO format files event-by-event, although it can also look at any file as a list of 32 bit integer (words). To run it simply execute:

java org.jlab.coda.eventViewer.EventTreeFrame

Make sure that the EventTreeFrame class or the jar file JEventViewer-1.x.jar in is your CLASSPATH environment variable. The following is a screen shot of the gui.
Figure 1.1: Event-viewing gui

[image: image1.jpg]Jevio Event Tree
File View Dict Event Filier

< prev next > dear | Size 10000 | | | dictionary

¢ [<Event> has BANKS: tag=1(0x1) num=0(0x0) datalen=17998 chidren=13 |4

) BANK of INT325: tag=1(0x1) num=1(0x1) dataler
7 CIBANK of BANKS: tag=10(0xa) num=0(0x0) datalen=72 childrer

¢] BANK of BANKS: tag=10(0xa) num=200(0xc8) datalen=70 children=7 [~

) BANK of DOUBLEG4s: tag=10(0xa) num=10(0xa) dataler
) BANK of DOUBLES4s: tag=10(0xa) num=20(0x14) datalen=8
[) BANK of DOUBLEG4s: tag=10(0xa) num=30(0x1e) datalen=8
) BANK of DOUBLES4s: tag=10(0xa) num=40(0x28) datalen=8
) BANK of DOUBLES4s: tag=10(0xa) num=50(0x32) datalen=8
) BANK of DOUBLEG4s: tag=10(0xa) num=60(0x3¢) datalen=8
[) BANK of DOUBLEG4s: tag=10(0xa) num=70(0x46) datalen=3
9 CIBANK of BANKS: 1ag=460(0x1cC) num=0(0x0) datalen=3485 children=2
9 CIBANK of BANKS: 1ag=460(0x1cC) num=100(0x64) datalen=285 childrer
) BANK of INT325: tag=460(0x1cc) num=20(0x14) datalen=93
) BANK of INT325: tag=460(0x1cc) num=21(0x15) datalen=93
) BANK of INT325: tag=460(0x1cc) num=22(0x16) datalen=93
9 CIBANK of BANKS: 1ag=460(0x1cc)_num=200(0xc8) datalen=3196_childr
) [BANK of DOUBLES4s: tag=460(0x1cc) num=1(0x1) datalen=186)

1

2

8412351740805

2150803082104

2402183143204

. 190006312702-04]

.70781952781e-04)

2354081147904

1571586541205

.083002264212-04|

221455842872-04

. 5B6852518052-05|

- 284545463802-04|

05546 288308204

.325277732042-04|

4433703025204

478309804522 04|

0045494125804

.421813042362-04)

1800113704004

433153803742 05|

462973106392 04|

1194168003104

.53743717240205|

5573020821202,

+109125367392-04]

. 70100880089205|

7464715262204

0625002608204

.051345392542-04]

.060572137072-04|

791063893052 04|

4308273052504

.827203618742-04|

.B2494558390204|

1273831872204

686408182252-04)

827748308542 04|

.830134768272-04)

3307424387205

2480781623203

.617275263442-04]

.97262395071e-03)

1346202900504

) BANK of DOUBLEG4s: tag=460(0x1cc) num=2(0x2) datalen=186
) BANK of DOUBLEG4s: tag=460(0x1cc) num=3(0x3) dataler
) BANK of DOUBLEG4s: tag=460(0x1cc) num=4(0x4) dataler
) BANK of DOUBLEG4s: tag=460(0x1cc) num=5(0x5) datalen=186
) BANK of DOUBLEG4s: tag=460(0x1cc) num=6(0x6) dataler
) BANK of DOUBLEG4s: tag=460(0x1c) num=7(0x7) dataler
) BANK of DOUBLEG4s: tag=460(0x1c) num=B8(0xB) datalen=186

6452142407824

841518356812 03|

. 508193315222-05)

484783318442 04|

0044349600404

.327726526852-04]

.47739004330205|

333058568132 04|

3502187010803

. 111022870602-04]

0423271414205

- 390683841702-04|

.52500202241e-03)

6409541903504

2765934618

369080001204

-961002730752-05| _7.502534573828-05

[) BANK of DOUBLEG4s: tag=460(0x1cc) num=9(0x9) datalen=186 230166000126-04] 2. 568837674908 -04]

) BANK of DOUBLEG4s: tag=460(0x1cc) num=10(0xa) datalen=186 .49943167567e-04| _1.18534048155e-03|

[} BANK of DOUBLEG4s: tan=460(0x1cc) num=11(0xb) datalen=186 |v| -74443781782e,03| 2. 26822665466¢ 03|

a1 i 1 Dl 6682422050404 _2.050022173572-06
stucure BANK wg 450 length 748 bytes

datatype DOUBLES4 number 1 description 77

1.1 Features

Here’s a quick list of the main features:

· Valid event sources are files, cMsg messages, and ET buffers

· Fast compare ability for data from different events

· When receiving events through cMsg or ET, they can be filtered based on their CODA event type (physics, control, etc.) and trigger type if physics event
· View integer data as hex or decimal

· Select dictionary from event source or from separate file containing dictionary

· View the dictionary being used

· Export any evio file in xml format
· Add or remove data columns

· View the contents of any file as 32 bit hex integers and search for values, evio structures, or evio errors
Starting with the middle of the gui first, the left side shows a tree structure diagram of the whole, single evio event being viewed. Notice that the type of each evio structure is given (bank, segment, tagsegment), along with the type of data it contains, tag, num, size, and # of children. Tag and num are shown in decimal and hex. If a dictionary is being used, the dictionary name is displayed instead of the corresponding structure type, data type, tag, and num values.

The right side, on the other hand, shows the data of any selected bank, segment, or tagsegment that contains a primitive data type. The number of columns can be set in the “View” menu. Integers can be displayed in hex or decimal.
A fast compare feature is able to compare data from different events. If the current event is changed while viewing the data of its selected structure, and if the new event has a structure with the same hierarchy of tags that the previous selection had, it too is automatically selected. This facilitates comparing the same structure in each successive event by simply hitting the “next” event button.
A dictionary can be loaded from a separate xml format file, or it can come embedded in an evio format file or buffer (cMsg, ET). The viewer allows the user to switch, in the “Dict” menu, between the different dictionaries if more than one is available. Any dictionary being used can be displayed instead of the data.

Selecting an ET system or a cMsg server as an event source, in the “Event” menu, brings up other menus to allow the proper connections to be created and maintained. The only assumptions made are that in a cMsg message, the evio data is contained in the byteArray field. Any dictionary is first looked for in the evio data and if none is found, it is looked for in a String payload item called “dictionary”.
The box in the upper left (under the row of menu buttons), “Event #”, shows the event currently selected (in this case 25) and allows the user to navigate to the desired event.

The box to its right, “Event Q”, shows different things depending on if the data source is a file, cMsg message, or ET event. For files it shows the total number of events (in this case 10,000). For cMsg messages and ET events, on the other hand, events are continually arriving. In this case, “Size” shows the number of events currently in an internal queue. “Limit” allows the user to set the size of this internal queue, while “Clear” will remove all events currently in the queue. Once this queue is full, nothing else is added. The “Event #” controls can be used to switch between events in the queue.
Switching between the different event sources can be done in the “Event” menu item. When selecting a cMsg or ET source, the “Filter” menu is enabled. With this menu, the user can choose to look at control, partially-built physics, physics events, or any combination as well as the selecting the run type of interest.
Notice that above the data, there are boxes containing the event and dictionary sources. Beneath the data are boxes containing information about the selected data structure.
Section

2

2. File Data Viewing
The following figure is a screen shot of a particular file’s data obtained by selecting the “View File Bytes” option of the “File” menu of the initial screen shown previously.

Figure 2.1: Data-viewing gui
[image: image2.png]File

/home/timmer/ evioTestFiles/hd_rawdata_001716_000.evio

emen Word Posttion +1 w2 3 w4 s Comments
Ly 0| 0x00000004| 0x00000000] 0x00000008] 0x00000001] 0x00000000] N
© Word Value 5| 0x00000004| 0x00000000] 0xc0da0100] 0x00000004| 0xffd10100] Block Header|=]
10 Ox54B16afi| 0x000006b4| 0x00000001] 0x0000=3ba| 0xB0000001]
© Word Position 15 0:00000008] __0x00000003] __0x00000000] __0xG0000004] __0xB0000000]
20 0x00000004| OxFd20100| Ox54B15atd] 0x00000000] Bock Header]
© Page Scrolling 25 000000000 0x000092eb| OxFF701001] 0x000000a3] OxFF232033
30000030006 0x00000000] 0x00000001] 000000000 0xb4ba525
® Evio Block 35 0x000006b4| 000000001 0x00850001] 0x00010000] 0x36010002
P — 40| OxbodbaB25] 000000000 0x35010002] 0xbodbaE25| 0x00000000
E 45| 0x38010002] 0xbO4baB25| 000000000 0x37010002] OxbodbaE25
OELETD 50000000000 0xd0010002] OxbSdbaB25| 0x00000000] 0x34010002
£ 55 0xbo4baB2s| 0x00000000] 0x3e010002] Oxb4baB25| 0x00000000
50| 0x33010002] 0xbO4baB25| 000000000 0x37010002] OxbSdbaE2s
searchlion 65| 0x00000000] 0x32010002 0xh94baB25| 0x00000000] 0x39010002
Oxc0d20100 ~ 70 0xbO4baB25| 0x00000000] 0x3d010002] Oxb94baB25| 0x00000000
75 0x3b010002] OxbO4baB25| 0x00000000] 0x3c010002] Oxbo4baszs
Search Controls 80| 0x00000000] __0x47010002] __0xbO4baR25| __0x00000000] __0x4e010002
- . 85| OxbodbaB25| 000000000 0xdd010002] OxbOdbaE25| 0x00000000
90| 0x52010002] 0xbO4baB25| 000000000 0x01010002] OxbSdbaE26
Ston] 95| 0x00000000] 0xd9010002] 0xb94baB25| 0x00000000] OXLc010002
100] OxbO4baB25| 0x00000000] 0x52010002] 0xbI4baE25| 0+00000000)
Done 105 0xdb010002] OxbdbaB25| 0x00000000] 0x5010002] 0xbI4baE2s|
110] 0x00000000] 0x13010002] Oxb94baB25 0x00000000] 0x1010002
EbETD 115] Oxbo4baB25| 0x00000000] Ox1h010002] OxbI4bas25| 0x00000000)
g 120] 0x07010002] 0xb94baB25] __0x00000000] __0x0010002 _0xb94bas25,
(5 Bl T ml 125] 0x00000000] 0x0d010002 0xh94baB25| 0x00000000] 0x0c010002
© Block # 52423 130]0xb34baB2S| 0x00000000] __0x0b010002] _0xb94baE25| 000000000
135 0x14010002] OxbodbaB25| 0x00000000] 0x15010002 0xbo4baE2s|
e i 140| 0x00000000] 0x16010002 0xh94baB25| 0x00000000] 0x13010002
© Event #1719 145(Oxbo4baB25| 0x00000000] 012010002 0xbI4baE25| 0x00000000)
P — 150 0x11010002] OxbodbaB25| 0x00000000] 0x10010002 0xbI4baE2s,
155 0x00000000] 0x20010002] Oxb94baB25] 0x00000000] 0x21010002]
© Event #1724 160 0xb94baB25 0x00000000 0x22010002] 0xb34baB25| _0x00000000
© Event #9032 165 0:23010002] 0xb94baB25| _0x00000000] __0x24010002 _0xb94bas25,
Ll 170]0x00000000] _0x29010002] __0xb4baB25 __0x00000000 __0x25010002)
© Event #13785 i 175] 0xb94baB25| 0x00000000] 0x22010002 0xh94baB25| 0x00000000]
180] 0x26010002] OxbodbaB25| 0x00000000] 0x28010002 0xbI4baE2s|
Block Info 185 0x00000000] 0x27010002] Oxb4baB25| 0x00000000] 0x1fo10002
Total words 58301 190] 0xb94baB25| 0x00000000] 000000077 0x00361001 0x00000075]
F— 195] 0x00120101] 0B0d00101] 0x30c0000K] 0x96297503| 000000017
1 mumber [300] 0xc4015007] OxbeBbSS44] OxbeBbSaE3| 0x8Bc00008| 0xfBC00000)
205 0x7Bc00000| 0xB1100101 0x91000001 0+96297503| 000000017
Frnems |E 210| 0xc4015007] 0xB9000006] 0x9000000] 0x9000000] 0x81500101]
|Version g 215] 0x91400001] 0x98297503| 000000017 0xc4015007] 0xbca35902)
Has dictionary [false 320] OxPod000ed| 0xB9400008 0XB1900101 0+91800001 0:96297503)
Is rast aise 225 0:00000017] _0xc015007] __0xa9800006] __0x19800000 __0x79800000)
230] 0x61d00101] 0x01c00001 0xG297503] 0x00000017| 0xcd015007]
235 Oxbeaf550d| Oxbcafso9d] 0XB9c0000E| 0x62100101] 0x92000001]
220] 0408297503 0x00000017] 0xcA015007 OxbcadSsbe| OxbeadSeec|
25 Oxbeadshd3| Oxa0000=d] 0xBa00000] 0xFa000000 0xF2000000)
250 0x62500101] 0x32400001 0xG297503 0x00000017 0xcd015007]
255 Oxbcbso5h| OxbcBbSba7| OxbcBbeSed| OxbcabGa0a| 0x6ad0000a|
350] 0xFad00000| 0xFad00000] 032900101 0+92800001 0:96297503)
365 0x00000017] Oxcd015007] 0xB3800006| 0xFaB00000| 0xFaB00000)
270] 0x63500101] 0x03400001 0xG297503] 0x00000017| 0xcd015007]
hragsar: et hradsa7e Fhdnnned b

There are occasions when one wants to examine the raw bytes in a file. This tool will allow one to do just that. Each cell of the table contains 32 bits worth of data displayed in hex. Data can be switched between big and little endian under the “File” menu. The table contains 200MB worth of data at one time. For larger files, the next or previous 200MB are loaded when required while scanning through it. On the very far right of the gui is a slider which indicates where the current view is in relation to the total length of the file.
1.2 Searching

In order to facilitate finding the data of interest, there are a number of different ways to hunt through it. The control panel on the left has “Search By” radio buttons allowing one to select whether to search by:

1. Looking for a given value

2. Jumping to a given position in the file

3. Scrolling page by page
4. Jumping from one evio block header to the next

5. Jumping from one evio event to the next

6. Scanning the whole file for evio faults or errors

1.2.1 By Value
Look for a given value by selecting the “Word Value” radio button, typing the value into the “Search For” widget, and then hit the forward or backward search button under “Search Controls”. The “Stop” button will be activated since searching a large file (say 20GB) may take serious time. If a search is stopped, the view position stays where it was when the search was started. If stopped, starting another search starts from the same location. A progress bar is there to estimate how much of the file has been searched.

When a value is found, it is highlighted in red. Hit the search button again to find the next or previous value. Highlights can be cleared under the “File” menu.
1.2.2 By Location

Look at a given location in the file by selecting the “Word Position” button, typing the position into the “Search For” widget, and then hitting the “Go” button. The view jumps to the given location and the value is selected (but not highlighted). The first position starts at 1, not 0. You can read the position from the table by taking the number in the far left column and adding the number of the heading at the very top of the column.
1.2.3 By Page
The “Page Scrolling” button activates the forward and backward buttons which hop through the file view by view.

1.2.4 By Evio Block Header

Look for an evio format block header by selecting the “Evio Block” button. The program first looks for the last word – the magic # 0xc0da0100 - of an evio block header. If found, it checks that the previous word is 0 and the one before that has the least significant 8 bits equal to 4 (the evio version). If so, it highlights all 8 words in orange. All the information contained in that header is also displayed on the left in a panel called “Block Info” which can be seen in the figure above.

This type of searching is useful when dealing with corrupted data files as it can home in on an area of the file whose format can be checked and can give information about what data should come following. Hint, if no block header is found in a scan, switch the data endianness and try another one.
1.2.5 By Evio Event

Look for an evio event by selecting the “Evio Event” button. This is less straightforward than looking for block headers since there is no universal signature to look for. There are two ways to do the search. The first way is start the search immediately upon loading the file’s data or to first select the “0” position (far left column before any data). Then hit the forward button. It is smart enough to hop over any block header encountered and uses the length found in the event’s header to be able to find the next when the forward button is clicked again. The first word of each event found in this way is highlighted in blue and the header information is displayed on the left in a panel called “Event Info” (see figure below).
[image: image3.png]Event Info

Length b
Tag [oxtraz
Num O

Type [BANK
Datatype [UINT32
Padding O

2.2 Event information panel

The second way to search is to select the known first word of an event with the mouse. Hit the forward button to find subsequent events. Hint, the word immediately after a block header is the first word of an event.
1.2.6 By Evio Faults

Look for faults or errors in the evio format by selecting the “Evio Fault” button. This program scans the file from beginning to end and lists any errors in a panel to the left called “Evio Errors” (which can be seen in figure 2.1). The algorithm used to find these errors assumes that if a block header length does not equal the sum of the lengths of all the events it contains, then the block header is correct and the events are in error. It tries to continue scanning for the next error and stops if it encounters an unrecoverable error or makes it to the end of the file.
The errors come in two varieties: block and event. All blocks in which there are problems are listed as are any events in which errors are found. These errors are listed as buttons. Click one and it hops to the location of the error with either the first block or event word selected. Its corresponding error message is also displayed at the top of the gui (not pictured).
iii

