
EVIO – A Lightweight Object-Oriented I/O Package
Elliott Wolin, D Abbott, V Gyurjyan, G Heyes, E Jastrzembski, D Lawrence, C Timmer

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

Conclusions
The EVIO package performs fast and efficient I/O between a

compact on-disk binary representation of experimental data
and an in-memory tree-structured container. It further
provides a rich set of facilities for creating and manipulating in-
memory data. EVIO is suitable for all stages of experimental
data storage and processing, from high-speed data acquisition,
to monte-carlo simulation, to data reduction, to final DST
analysis.

The C++ version is complete and can be downloaded from the
FTP site. A Java version is under development.

Only a few EVIO features are shown on this poster. A full
description can be found in the User’s Manual on the FTP site.Downloads

Download and give EVIO a try! You can
get your free copy today at

ftp://ftp.jlab.org/pub/coda/evio/2.0
Elliott Wolin, (757) 269-7365,

wolin@jlab.org

Example Tree in XML
<event format="evio" count="1" content="bank" data_type="0x10“

tag="1" num="204">

<uint32_t data_type="0x1" tag="234" num="8">
0xffffffff 0xfffffffe 0xfffffffd 0xfffffffc 0xfffffffb
0xfffffffa 0xfffffff9 0xfffffff8 0xfffffff7 0xfffffff6

</uint32_t>

<int32_t data_type="0xb" tag=“21" num=“14">
-1 -2 -3 -4 -5
-6 -7 -8

</int32_t>

<float64 data_type="0x8" tag="3" num=“21">
-1.00000000000000000000e+01 -2.00000000000000000000e+01
-3.00000000000000000000e+01 -4.00000000000000000000e+01

</float64>

<string data_type="0x3" tag="6" num=“22">
<![CDATA[
hello world
]]>

</string>

<int16_t data_type="0x4" tag="4" num=“45">
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

</int16_t>

<bank content="bank" data_type="0x10" tag="1" num="12">
<float32 data_type="0x2" tag="8" num="2">

1.000000 2.000000 3.000000 4.000000 5.000000
6.000000 7.000000 8.000000 9.000000 10.000000

</float32>
<bank content=”bank" data_type="0x10" tag=”9" num=”56">

<uint32_t data_type="0x1" tag=”32">
0x1 0x2 0x3 0x4 0x5

</uint32_t>
</bank>

</bank>
<event>

EVIO (EVent I/O) is a lightweight C++ package
(Java version under development) that provides a
simple tree-structured container for experimental
data, and the ability to easily marshall data to and
from disk. Endian conversions are handled
automatically. EVIO additionally provides simple
but powerful mechanisms to create, query, and
manipulate in-memory data trees.

When to Use EVIO
EVIO is suitable whenever your data can be

represented by a tree structure of leaf and
container nodes, where leaf nodes contains arrays
of primitive types, and container nodes contain
other nodes, but not data.

EVIO and XML
The EVIO data model maps directly to XML, and

EVIO utilities can easily transform between binary
on-disk, in-memory, and ASCII XML formats. It
borrows many ideas from the XML Document
Object Model (DOM).

EVIO and the STL
The EVIO package uses templates and the

Standard Template Library (STL), and its data
query model is very STL-like in that it is based on
iterators, algorithms, function objects, etc.

EVIO Development History
EVIO was originally developed for use in high-

speed DAQ systems at JLab, and the buffer
manager component has been in use for over a
decade. The object-oriented features described
here are a recent development that extends the
utility of EVIO to cover the entire data analysis
chain.

Introduction
EVIO data trees consist of leaf nodes (or

banks), containing data, and container nodes (or
banks), containing other nodes (which can then
hierarchically contain other nodes or data).

Nodes (banks) are labeled with a 16-bit
integer tag and an 8-bit num. Two-word
headers are used on disk, and a compact 1-word
header format is supported that stores less bits
for tag and does not store num.

Leaf nodes contain arrays of the primitive
types: int8_t, uint8_t, int16_t, …, int64_t,
uint64_t, float32, and float64, or a string.

The EVIO Data Tree

Tree Creation and I/O
// create event tree and root node

int16_t tag;
int8_t num;
evioDOMTree event(tag=1, num=2);

// add banks to event tree in a single level below the root node
event.addBank(tag=2, num=9, ivec); // vector<int> ivec
event.addBank(tag=3, num=10, ibuf, len=8); // int ibuf[8]
event << evioDOMNode::createEvioDOMNode(tag=7, num=14, ivec);

// write event tree(s) to disk

// open binary file for writing
evioFileChannel file("fakeEvents.dat","w");
file.open();

// write out event tree
file.write(event);

// write out other event trees…

// close file
file.close();

// read and process events

// open binary file for reading
evioFileChannel file("fakeEvents.dat","r");
file.open();

// loop over all events in file
while(file.read()) {

// create event tree from binary event in fileChannel object
evioDOMTree event(file);

cout << event.toString() << endl; // print event in XML
}

// close file
file.close();

Query and Modify Tree
// get lists of pointers to various nodes in event tree using built-in and
// user-defined selection function objects

evioDOMNodeListP fullList = event.getNodeList(); // all nodes
evioDOMNodeListP fList = event.getNodeList(typeIs<float>()); // holds floats
evioDOMNodeListP t5List = event.getNodeList(tagEquals(15)); // has tag=15
evioDOMNodeListP myList = event.getNodeList(myFilter); // user defined

// apply user-defined processing function to all nodes in full list
for_each(fullList->begin(), fullList->end(), myProcessingFunction);

// simple filter function

bool myFilter(const evioDOMNodeP pNode) {

return((pNode->tag==2)&&(pNode->num==9));
}

// simple processing function

void myProcessingFunction(const evioDOMNodeP pNode) {

cout << " tag is " << pNode->tag << “, num is " << pNode->num << endl;
cout << pNode->toString() << endl; // print node in XML

}

// get data vectors from all nodes containing floats and print

evioDOMNodeList::const_iterator iter;
for(iter=fList->begin(); iter!=fList->end(); iter++) {

const vector<float> *fvec = (*iter)->getVector<float>();
for(int i=0; i<fvec->size(); i++) cout << (*fvec)[i] << endl;

}

// tree building, node and data manipulation

// create a container node using static factory method and add to tree
evioDOMNodeP cnode = evioDOMNode::createEvioDOMNode(tag=3, num=7);
event << cnode;

// create a leaf node, fill with data from vector<int> ivec1
evioDOMNodeP lnode =

evioDOMNode::createEvioDOMNode(tag=2, num=6, ivec1);

// hang lnode and more new leaf nodes off cnode (note dereferencing)
*cnode << lnode

<< evioDOMNode::createEvioDOMNode(tag=8, num=1, dbuf, 10)
<< evioDOMNode::createEvioDOMNode(tag=8, num=2, fvec);

// replace lnode data with data from vector<int> ivec2
lnode->replace(ivec2);

// add some more data from vector<int> ivec3
*lnode << ivec3;

// get list of all children of root node (same for any other container node)

evioDOMNodeList *clist = event.root->getChildList();
cout << "Root node child list length is " << clist->size() << endl;

Advantages
The EVIO package is fast and has a small footprint. The on-disk

format is very compact, and compression is generally not needed.

The on-disk format is simple, and event trees can be written
directly to disk in C without the need to create an in-memory
event tree with subsequent serialization to disk. This is typically
done in DAQ systems where speed is essential and trees are fairly
simple.

For all other situations the C++ interface, as described on this
poster, should be used. Thus the EVIO package can be used
seamlessly at all levels of data taking and analysis.

EVIO is written in C++ and standard C (buffer I/O component),
and compiles and runs on all Unix platforms we have available to
us (many Linux variants and Solaris, multiple compilers). Please
contact us if you would like to use EVIO on MS Windows.

Example Data Tree

1 204

Event

tag num

array
contents21 14

int32_t

3 21

float64

9 56

bank

1 32

uint32_t

234 8

uint32_t

1 12

bank

4 45

int16_t

6 22

string

8 2

float32

note: tag and num values
are arbitrary

