VME to JTAG Implementation on TID

J. William Gu
Data Acquisition Group

Sept. 30, 2010: Initial release

Introduction:

The JTAG (IEEE 1149.1) is a popular serial protocdlhis is widely used in Xilinx FPGA and
PROM for debug and programming. To access the JpAfs on the TID board, a VME to JTAG
translation engine is developed.

The engine uses VME A24D32 and implemented full GTiéastruction register shift, JTAG data
register shift, JTAG reset, TDO readout, and wgititt RESET_IDLE state. These functions are good
enough for Xilinx FPGA/PROM debug and programmitighugh it does not implement all the features
of the JTAG protocol.

TID implementation (VME to JTAG engine):

The TID boards are implemented as VMEG64x boardeeyTare expected to be in the JLAB VXS
crate (minimum: standard 6U VMEG64 crate). The VME4D32 is going to be used for VME t&C
engine. The engine also works at the A24D16 if WME controller is a 3U card, which has no
connection to data bus bit(31:16). Each JTAG devictreated as a block of VME addresses. The
different addresses in the address block indide#eJTAG data/instruction register shifts and numndfer
bits (1 to 32) in the transfer.

The table 1 shows the VME address allocation fer¥XhAG engine.

Table 1: VME address allocation for JTAG engine

A(23:19) TID board address, set by the 5-bit switch or VMEG§&ographic address

A(18:16) 001: JTAG for PROM, that is XCF32P
010: JTAG for FPGA, that is XC5VL30T

A(15:13) Reserved (Not used)

A(12:8) Number of bits to shift (Instruction registor Data register), n=A(12:8)+1, that|is
the minimum number of bits to shift is 1, and maxmnumber of bits to shift is 32
(D32 limitation), the lower order of bits in the 282 are used.

A(7:4) Specific JTAG command.

0001: JTAG data register shift;

0010: JTAG instruction register shift;

0011: JTAG reset, (set the JTAG to RESET_IDLE 3tate

=

A(3) JTAG TRAILER_ENABLE. This will enable severaixtra JTAG clocks (afte
register shift) to move the JTAG state machine fregister shift (either data register |or
instruction register) to RESET_IDLE.

A(2) JTAG HEADER_ENABLE. This will enable severaktra JTAG clocks (befor
register shift) to move the JTAG state machine frRBBSET IDLE to register shit

1]

—

(either data register or instruction register deliggon the shift type A(7:4))

The VME read to the device will return the datarently stored in the TDO shift register (32-bit).
The read address is A(23:16). A(15:0) are DONQOTE tits. D32 VME read only.

The JTAG engine uses the FPGA configure clock (2&zMas the base clock. For easy control, the
JTAG clock (TCK) stays low normally (pull down). glower clock is derived from the FPGA configure
clock (divided by n) by the DCM. The slower cldskurther divided by two to get the JTAG clockher
JTAG clock has a 50% duty cycle. The TDI and TMda setup time of a full slow clock cycle, and
hold time of a full slow clock cycle. The TDO hassetup time of full slow clock cycle too. The
following figure shows the timing of théd bus:

s NIRlplglglglglglglglglplptptptipines
SlowClk ' ' ' '
TCK | | |

TDI/TMS/TDO

AN

| Active edge for registers

The VME to JTAG engine has been implemented, astedeby reading back the FPGA/PROM
USERCODE and CHIPID. The full JTAG state machieguirement could be easily achieved by adding
another data shift with TMS high. This is easgdg but as our use of the JTAG, it is not necessary

Examples of VME software implementation:

1. JTAG state machine reset:

One VME A24D32 write. The address is:

AM(5:0) = 0x39 or Ox3A: A24D32;

A(23:0) = bbbb,bxxx,nnnn,nnnn,0011,nn00: bbbbb, Mddule address; xxx, PROM JTAG or FPGA
JTAG; nn: do not care

D(31:0): do not care;

This is will reset the PROM JTAG (or FPGA JTAG)tetanachine to “RESET_IDLE” state.

2. Register shifts with up to 32 bits:

One VME A24D32 write cycle is used:

AM(5:0) = 0x39 or Ox3A: A24D32;

A(23:0) = bbbb,bxxx,nnny,yyyy,00zz,1100: bbbbb, mbdule address; xxx, device selection: PROM or
FPGA; nnn, do not care; yyyyy, number of bits tdtgil to 32); zz: data register shift or instructi
register shift.

D(31:0): data to be shifted. LSB first.

This is implemented in the FPGA design, and fumaily simulated in ISE10.1 Xilinx design. Tested o
the TID board (signals were probed).

3. Register shifts with more than 32 bits:

For the shifts (data register shift or instructi@gister shift) with more than 32 bits, two or more
VME A24D32 cycles are needed:
First VME write cycle:
AM(5:0) = 0x39 or Ox3A: A24D32;
A(23:0) = bbbb,bxxx,nnn1,1111,00zz,0100: bbbbbmbldule address; xxx, device, PROM or FPGA; nnn,
do not care; zz, data register shift or instructiegister shift.
D(31:0): first 32 bit of data to be shifted to JTAG

This will shift the first 32-bit of data with JTAGtate machine just from RESET_IDLE to registertshif
after register shift, the JTAG stays at registéit smode.

Second (and later) VME write cycle:

AM(5:0) = 0x39 or Ox3A: A24D32;

A(23:0) = bbbb,bxxx,nnny,yyyy,00zz,v000. bbbbb,mdbdule address; xxx, device, PROM or FPGA; nnn,
do not care; yyyyy, number of bits to shift; zztaleegister shift or instruction register shift;set to 1
only for the last VME write, other wise, set to 0.

D(31:0): data to be shifted to JTAG register (LSBtj

For example, if 150 bits of data needs be shifteBROM JTAG data register and the TID is in slot#20
with the board address space set the same, five WKtE commands are needed:

First, A=0b'1010,0001,0001,1111,0001,0100; D=D@&tag); 32-bit with header, from RESET_IDLE;

Second, A=0b'1010,0001,0001,1111,0001,0000; D=B&t&@); 32-bit no header, no trailer;

Third, A=0b’1010,0001,0001,1111,0001,0000; D=Dab=§@); 32-bit no header, no trailer;

Forth, A=0b’1010,0001,0001,1111,0001,0000; D=Da&@(26); 32-bit no header, no trailer;

Fifth, A=0b’1010,0001,0001,0101,0001,1000; D=Da#&(128). 22-bit trailer only, go to RESET_IDLE.

4. TDO register read

A24D32 is supported. One VME read can access B@FdIDO data. If the previous operation has
less than 32-bits, the most significant bits of &&bits data read are to be used. The least [3Bsn
should be ignored.

AM(5:0)=0x39 or 0x3A, A24D32;

A(23:0)=bbbb,bxxx,nnnn,nnnn,nnnn,nn00: bbbbb, THoe address; xxx, device, PROM or JTAG.

5. RESET_IDLE wait

The JTAG wait can be implemented as “fake JTAGstegishift”. This gives a much more precise
waiting than a CPU sleep command. The “fake regishift” is a register shift without header arallar
when the JTAG is in RESET_IDLE state. The waitiimge is determined by the number of bits to shift.
If the JTAG clock has a period of Tis, N bits of “fake register shift” will be,N ns.

