
Thomas Jefferson National Accelerator Facility
Data Acquisition Group

12000 Jefferson Ave., MS 12H
Newport News, VA 23606

Phone: (757)269-7030
FAX: (757)269-5800

TJNAF
J e f f e r s o n L a b o r a t o r y

EVENT TRANSFER or
“ET” SYSTEM

Carl Timmer April 17, 2000
TJNAF/Physics Division/Data Acquisition Group System Routines

EVENT TRANSFER or “ET” SYSTEM

– 2 –

–iii –

Table Of Contents
1. Introduction ...5

1.1 General Description of the ET System ...5
1.2 Some Details of the ET System ..6
1.3 Event Flow ..8

2. Creating an ET system ...9
2.1 System Creation ..9

2.1.1 ET system identification . 9
2.1.2 ET system configuration . 10

2.2 Example ..11
3. Using An ET System ...13

3.1 Opening an ET System ...13
3.2 Definition of Stations ..15

3.2.1 Definition . 15
3.2.2 Examples . 17

3.3 Creation & Removal of Stations ...18
3.4 Attaching to and Detaching from Stations19
3.5 Handling Events ..19

3.5.1 Creating . 19
3.5.2 Reading . 20
3.5.3 Writing . 20
3.5.4 Dumping . 22

3.6 Closing an ET System ..22
4. ET Programming Details ..23

4.1 Program Flow ...23
4.2 Handling Signals ...24
4.3 Defining Functions for Event Selection25
4.4 Useful ET Library Functions ..26
4.5 How to Avoid Blocking Forever ..27
4.6 Includes , Flags, and Libraries ..27
4.7 Debug Output ..28
4.8 TCL/TK Interface ...29
4.9 Monitoring an ET System ...30

5. Examples ..31
5.1 Event Producer ..31
5.2 Event Consumer ..33

6. Modifying The ET System ..38
6.1 Versions ..38

–iv –

6.2 Event Selection ...38
6.2.1 Selection Integers . 38
6.2.2 Selection Functions . 39

6.3 Setting Heartbeat and Heartmonitor Periods40
6.4 Setting the Number of Attachments and Processes41
6.5 Setting Defaults ..41

7. Remote ET ...42
7.1 Remote Node Operation Overview ..42
7.2 System Connection ...42

7.2.1 Direct Connection . 43
7.2.2 Broadcasting . 43
7.2.3 Multicasting . 44
7.2.4 Port Selection for Broad/Multicasting . 47
7.2.5 Defaults & Macros . 47
7.2.6 Examples . 48

7.3 Remote Programming Details ...50
7.3.1 Errors . 50
7.3.2 Remote Behavior on a Local Host . 51
7.3.3 Modifying Events . 51
7.3.4 Creating New Events . 51
7.3.5 Multi-Threading . 52

7.4 Swapping Data ..52
7.5 Transferring Events Between 2 ET Systems53

8. Useful Macros ..55
8.1 Event Priority ..55
8.2 Event Data Status ..55
8.3 String Lengths ...55
8.4 Waiting Modes for Events ..55
8.5 Station Related ..56

8.5.1 General . 56
8.5.2 Station Status . 56
8.5.3 Number of Users per Station . 56
8.5.4 Station Blocking Modes . 56
8.5.5 Event Selection Modes . 56
8.5.6 Event Restore Modes . 57
8.5.7 Default Values . 57

8.6 System Related ...57
8.7 Errors ..57
8.8 Debug Output Levels ..58
8.9 Remote Client Related ..58

I. User Routines ...60

–v –

I.1 General Functions ...60
I.1.1 int et_open . 60
I.1.2 int et_close . 62
I.1.3 int et_forcedclose . 63
I.1.4 int et_alive . 64
I.1.5 int et_wait_for_alive . 65

I.2 Open Configuration Functions ...66
I.2.1 int et_open_config_init . 66
I.2.2 int et_open_config_destroy . 66
I.2.3 int et_open_config_setwait . 67
I.2.4 int et_open_config_getwait . 67
I.2.5 int et_open_config_settimeout . 68
I.2.6 int et_open_config_gettimeout . 68
I.2.7 int et_open_config_sethost . 69
I.2.8 int et_open_config_gethost . 69
I.2.9 int et_open_config_setmode . 70
I.2.10 int et_open_config_getmode . 70
I.2.11 int et_open_config_setdebugdefault . 71
I.2.12 int et_open_config_getdebugdefault . 71
I.2.13 int et_open_config_setcast . 72
I.2.14 int et_open_config_getcast . 72
I.2.15 int et_open_config_setaddress . 73
I.2.16 int et_open_config_getaddress . 73
I.2.17 int et_open_config_setport . 74
I.2.18 int et_open_config_getport . 74
I.2.19 int et_open_config_setserverport . 75
I.2.20 int et_open_config_getserverport . 75
I.2.21 int et_open_config_setTTL . 76
I.2.22 int et_open_config_getTTL . 76

I.3 System Functions ..77
I.3.1 int et_system_start . 77
I.3.2 int et_system_close . 77
I.3.3 int et_system_getlocality . 78
I.3.4 int et_system_setdebug . 79
I.3.5 int et_system_getdebug . 79
I.3.6 int et_system_getnumevents . 80
I.3.7 int et_system_geteventsize . 80
I.3.8 int et_system_gettempsmax . 81
I.3.9 int et_system_getstationsmax . 81
I.3.10 int et_system_getprocsmax . 82
I.3.11 int et_system_getattsmax . 82
I.3.12 int et_system_getheartbeat . 83
I.3.13 int et_system_getpid . 83
I.3.14 int et_system_getprocs . 84
I.3.15 int et_system_getattachments . 84

–vi –

I.3.16 int et_system_getstations . 85
I.3.17 int et_system_gettemps . 85
I.3.18 int et_system_gethost . 86
I.3.19 int et_system_getserverport . 86

I.4 System Configuration Functions ..87
I.4.1 int et_system_config_init . 87
I.4.2 int et_system_config_destroy . 87
I.4.3 int et_system_config_setevents . 88
I.4.4 int et_system_config_getevents . 88
I.4.5 int et_system_config_setsize . 89
I.4.6 int et_system_config_getsize . 89
I.4.7 int et_system_config_settemps . 90
I.4.8 int et_system_config_gettemps . 90
I.4.9 int et_system_config_setstations . 91
I.4.10 int et_system_config_getstations . 91
I.4.11 int et_system_config_setprocs . 92
I.4.12 int et_system_config_getprocs . 92
I.4.13 int et_system_config_setattachments . 93
I.4.14 int et_system_config_getattachments . 93
I.4.15 int et_system_config_setfile . 94
I.4.16 int et_system_config_getfile . 94
I.4.17 int et_system_config_setcast . 95
I.4.18 int et_system_config_getcast . 95
I.4.19 int et_system_config_setaddress . 96
I.4.20 int et_system_config_getaddress . 96
I.4.21 int et_system_config_setport . 97
I.4.22 int et_system_config_getport . 97
I.4.23 int et_system_config_setserverport . 98
I.4.24 int et_system_config_getserverport . 98

I.5 Event Functions ..99
I.5.1 int et_event_new . 99
I.5.2 int et_events_new . 101
I.5.3 int et_event_get . 103
I.5.4 int et_events_get . 105
I.5.5 int et_event_put . 107
I.5.6 int et_events_put . 108
I.5.7 int et_event_dump . 109
I.5.8 int et_events_dump . 110
I.5.9 int et_events_bridge . 111
I.5.10 int et_event_getdata . 113
I.5.11 int et_event_setdatastatus . 114
I.5.12 int et_event_getdatastatus . 114
I.5.13 int et_event_setlength . 115
I.5.14 int et_event_getlength . 115
I.5.15 int et_event_setpriority . 116
I.5.16 int et_event_getpriority . 116

–vii –

I.5.17 int et_event_setcontrol . 117
I.5.18 int et_event_getcontrol . 117
I.5.19 int et_event_setendian . 118
I.5.20 int et_event_getendian . 118
I.5.21 int et_event_needtoswap . 119
I.5.22 int et_event_CODAswap . 119

I.6 Station Functions ..120
I.6.1 int et_station_create . 120
I.6.2 int et_station_remove . 121
I.6.3 int et_station_attach . 122
I.6.4 int et_station_detach . 123
I.6.5 void et_wakeup_attachment . 124
I.6.6 void et_wakeup_all . 124
I.6.7 int et_station_isattached . 125
I.6.8 int et_station_exists . 125
I.6.9 int et_station_name_to_id . 126
I.6.10 int et_station_getattachments . 127
I.6.11 int et_station_getstatus . 127
I.6.12 int et_station_getinputcount . 128
I.6.13 int et_station_getoutputcount . 128
I.6.14 int et_station_getblock . 129
I.6.15 int et_station_getuser . 129
I.6.16 int et_station_getrestore . 130
I.6.17 int et_station_getselect . 130
I.6.18 int et_station_getcue . 131
I.6.19 int et_station_getprescale . 131
I.6.20 int et_station_getlib . 132
I.6.21 int et_station_getfunction . 133
I.6.22 int et_station_getselectwords . 134

I.7 Station Configuration Functions ...135
I.7.1 int et_station_config_init . 135
I.7.2 int et_station_config_destroy . 135
I.7.3 int et_station_config_setblock . 136
I.7.4 int et_station_config_getblock . 136
I.7.5 int et_station_config_setselect . 137
I.7.6 int et_station_config_getselect . 137
I.7.7 int et_station_config_setuser . 138
I.7.8 int et_station_config_getuser . 138
I.7.9 int et_station_config_setrestore . 139
I.7.10 int et_station_config_getrestore . 139
I.7.11 int et_station_config_setcue . 140
I.7.12 int et_station_config_getcue . 140
I.7.13 int et_station_config_setprescale . 141
I.7.14 int et_station_config_getprescale . 141
I.7.15 int et_station_config_setselectwords . 142
I.7.16 int et_station_config_getselectwords . 142

–viii –

I.7.17 int et_station_config_setlib . 143
I.7.18 int et_station_config_getlib . 143
I.7.19 int et_station_config_setfunction . 144
I.7.20 int et_station_config_getfunction . 144

I.8 Bridge Functions ...145
I.8.1 int et_events_bridge . 145
I.8.2 int et_bridge_config_init . 147
I.8.3 int et_bridge_config_destroy . 147
I.8.4 int et_bridge_config_setmodefrom . 148
I.8.5 int et_bridge_config_getmodefrom . 148
I.8.6 int et_bridge_config_setmodeto . 149
I.8.7 int et_bridge_config_getmodeto . 149
I.8.8 int et_bridge_config_setchunkfrom . 150
I.8.9 int et_bridge_config_getchunkfrom . 150
I.8.10 int et_bridge_config_setchunkto . 151
I.8.11 int et_bridge_config_getchunkto . 151
I.8.12 int et_bridge_config_settimeoutfrom . 152
I.8.13 int et_bridge_config_gettimeoutfrom . 152
I.8.14 int et_bridge_config_settimeoutto . 153
I.8.15 int et_bridge_config_gettimeoutto . 153
I.8.16 int et_bridge_config_setfunc . 154
I.8.17 int et_bridge_CODAswap . 155

Chapter 1 Introduction

The following is a diagram of the basic architecture of the ET system.

Figure 1. ET System Architecture

1.1 General Description of the ET System

The main idea behind this “Event Transfer System” software is to
create an extremely fast method of transferring “events” from
process to process. An event is simply an empty buffer or memory
that can be filled with whatever data users wants to share with each
other.

Input
List

Output
List

Grand Central
Station

Input
List

Output
List

Station 1

Input
List

Output
List

Station N

Producer 1

Producer N

Consumer 1

Consumer N

Consumer 1

Consumer N

ET System Process

User Processes

Introduction –6 –

In a nutshell, the ET “system”consists of a single process which
memory maps a file into its memory space. This file can be used by
any “user”process to map that same memory into its own space.
Although done transparently to the user, it allows for quick commu-
nication between processes and forms the foundation of the event
transfer system. The system is responsible for the transfer of all
events from user to user, or more accurately, from station to station.
The system consists of “stations”,each of which are essentially two
lists: 1) an input list of events to be read, and 2) an output list of
events that have been read and are ready to be sent to the next
station. These stations, in turn, are themselves formed into a linked
list. Events pass from statin to station until they reach the last station
in the list and are then returned to the first station.
The first station is special and for lack of a better name is called,
grandcentral station. It is a repository of unused events which it
gives to event “producers”who ask it for one. It is created automat-
ically when starting up an ET system. All other stations are created
by users. They are linked together in the order they are created on a
first-come-first-serve basis.
User processes can use functions from an ET system library to
connect to the mapped memory - also called opening the ET system.
Once open, the user can proceed to create stations and then make
attachments to those or other stations. Once attached to a particular
station, one can read and write events from it. The above steps can
also be reversed by detaching from stations, removing stations, and
closing the ET system in that order.
In the process of reading or “getting”an event, the user grabs one
from a station’s input list and similarly, in the process of writing or
“putting”it, the user places it into the station’s output list. All output
lists have enough space to contain all events in the system. Thus a
user can put events with speed and impunity since there will always
be room.
In the following document, processes which write data into event
buffers thereby creating data are called producers, while processes
which are interested in reading, analyzing, and even modifying data
produced by others are called consumers.

1.2 Some Details of the ET System

Take a closer look by examining figure 2. It shows the flow of events
with everything occurring completely in the ET system process. One
advantage of doing things this way is that crashed user processes

–7 – Introduction

will not affect the flow of events, avoiding bringing the whole system
to a grinding halt.

Figure 2. Event Transfer by Conductor Threads.

The way that this is accomplished is that ET is multithreaded. Each
station has its own event transfer thread - or conductor - which is
waiting for output events. When an event is written, it wakes up the
conductor which reads all events in the list, determines which events
go where, and writes them in blocks to each station. The conductor
also releases the specially allocated memory associated with tempo-
rary events (more on temp events later).
The use of threads have made complete error recovery possible
99.9% of the time. The system and user processes each have a thread
which sends out a heartbeat (increments integer in shared memory).
The system monitors each process and each process monitors the
system in yet another thread. If the system dies, user processes auto-
matically return from any function calls that are currently pending
and can make a function call to find out if the system is still alive or
can wait until it resurrects. Likewise, if a user’s heartbeat stops, the
system kills the user and erases any trace of it from the system. All
events tied up by the dead user process are returned to the system.
Users can tell a station to take those events and send them to either:
1) the station’s input list, 2) the station’s output list, or 3) grandcen-
tral station (essentially dumping them).
Safety features include tracking an event’s owner - the process that
currently has control over it. Keeping tabs on who has an event
prevents the user from writing the same event twice or writing
events into the system which it doesn’t own and thereby creating
serious problems.

Input
List

Output
List

Grand Central
Station

Input
List

Output
List

Station 1

Input
List

Output
List

Station Last

Conductor Conductor Conductor

Introduction –8 –

Temporary events are called such because occasionally, a user will
need an event to hold a large amount of data - larger than the space
that was allocated for an event when the ET system was started and
the event size was determined. In such cases, a request for a large
event will cause a file to be memory mapped with all the requested
space. When all users are done with it, this temporary event will be
disposed of - freeing up its memory. Incidentally, this is all trans-
parent to the user.
Events can be either high or low priority. High priority events that
are placed into the system are always placed at the head of stations’
input and output lists. That is, they are placed below other high
priority, but above all the low priority items. (If there is a demand for
it, the capability to generate events which could be immediately
broadcast to all stations could be implemented. If the high/low
priority business is useful/useless to the reader, the author would
appreciate the feedback.)
The ET system consists of one process and allows no environmental
variables to affect its behavior. In addition, there are no global or
static variables in the code, making it reentrant. This allows one to
use more than one ET system at the same time. Multiple systems
peacefully coexist.
Currently ET systems will run on the Solaris and Linux operating
systems.

1.3 Event Flow

From start to finish, events flow something like this. An ET system is
started up with a unique filename to identify it. Once a system exists,
a process can open the system which maps ET memory into its own
space. At this point the user can begin to use it.
To do anything interesting, a user must attach to a station that it
created or that already exists and receive a unique identifier which it
can then use to read and write events. They can be read or written
either singly or in blocks (i.e. arrays).
A process can attach to many different stations, and it will receive a
unique identifier for each station that it attaches to. (There are some
“gotchas”in this area to be discussed later). Processes which wish to
be producers can do so by attaching to grandcentral and requesting
new events. Alternatively, any attached processes can request new
events and write them into their own stations.
After attaching to a station, one can also detach from that station.
This is a necessary prerequisite - all attachments must be detached -
should one want to remove a station. Grandcentral station (the first
and automatically created station) can never be removed.
Should the ET system ever die, this can be detected. It is also possible
to wait until the system restarts by calling a single routine.

Chapter 2 Creating an ET system

2.1 System Creation

To create an new ET system one only needs to make a single call to
the ET library function, “et_system_start”. All ET systems are
completely independent of each other, allowing the creation of as
many as are necessary. However, bear in mind that the process
creating an ET system must remain in existence. In other words, it
does NOT spawn or fork off an independent ET process. (Although
it is possible for any user to implement such behavior).
The arguments to “et_system_start(et_sys_id* id, et_sysconfig
sconfig)”are a pointer to an ET system identification and an ET
system configuration.
The behavior of this routine is as follows. If the name of the ET
system file (see below) given in the configuration parameter does not
exist, an ET system is created with no objections. If, however, such a
file does exist, it is first mapped into the process’ memory. The
memory is monitored to see if there is an living system heartbeat. If
there is, then an ET system is already attached to it and an error is
returned. If there isn’t, a check is made to see if the size and shape of
the existing ET system is the same as the one in the configuration
parameter. If it isn’t an error is returned. If it is, then the memory is
carefully initialized taking care not to overwrite important data
about the current state of the system and all necessary threads are
started.
To close the newly created ET system, use the function
et_system_close(et_sys_id id). This may only be called by the
process which called “et_system_start” or an error will be returned.

2.1.1 ET system identification

An ET system id is created by declaring a variable of the type
“et_sys_id”. A pointer to this variable is then passed to
“et_system_start”.When the user has no more use for the ET system,
a call to “et_system_close”will stop all ET-related threads and

Creating an ET system –10 –

unmap the ET memory. The process that called “et_system_start”
can continue on its merry way, but all ET clients are left to fend for
themselves.
Alternatively, if a user is attaching to an existing ET system instead
of trying to create one, a pointer to a system id is one parameter
passed to the “et_open”function (more on this later). A call to
“et_close”is then required to cleanly remove all connection to the ET
system.

2.1.2 ET system configuration

An ET system configuration is created by declaring a variable of the
type “et_sysconfig”.Once this variable is declared, it must be initial-
ized before further use. Thus users must call the function
“et_system_config_init”. After initialization, calls can be made to
functions which set various properties of the specific configuration.
Calls to these setting functions will fail unless the configuration is
first initialized.
When the user is finished using a configuration variable, the user
must call “et_system_config_destroy”with the configuration as an
argument in order to properly release all memory used.
The configuration parameters that the user can set are the total
number of events, the maximum size of each event, the maximum
number of temporary events, the maximum number of stations, the
maximum number of connecting processes, the maximum number
of attachments to stations, and the name of the system. For remote
users, one can also set how to find the remote ET systems (either by
broadcasting or multicasting), what IP address to use, and what port
number to use.
The functions used to SET these parameters are listed below along
with a short explanation for each:

1. et_system_config_setevents(et_sysconfig sconfig, int val) :
sets the total number of events.

2. et_system_config_setsize(et_sysconfig sconfig, int val) :
sets the maximum size in bytes for each events’ data.

3. et_system_config_settemps(et_sysconfig sconfig, int val) :
sets the maximum number of temporary events. These
events are used when an event is required whose data size
exceeds the limit set by the previous function. To accommo-
date large events, memory is specially allocated as needed.
This cannot exceed the total number of events in the system.

4. et_system_config_setstations(et_sysconfig sconfig, int
val) : sets the maximum number of stations.

5. et_system_config_setprocs(et_sysconfig sconfig, int val) :
sets the maximum number of user processes which may
open an ET system.

–11 – Creating an ET system

6. et_system_config_setattachments(et_sysconfig sconfig,
int val) : sets the maximum number of attachments to sta-
tions.

7. et_system_config_setfile(et_sysconfig sconfig, char *val) :
defines the name of an ET system. Each ET system is defined
by a unique file name which is used to implement the mem-
ory mapped file basis of the ET system.

8. et_system_config_setcast(et_sysconfig sconfig, int val) :
for remote users, the mechanism for finding ET systems is
set to broadcasting by setting val=ET_BROADCAST, or to
multicasting by setting it to ET_MULTICAST.

9. et_system_config_setaddress(et_sysconfig sconfig, char
*val) : defines the IP address of the broadcast or multicast
used for finding ET systems by remote users. The address
must be in dotted-decimal form.

10. et_system_config_setport(et_sysconfig sconfig, int val) :
for remote users, set the broad/multicast port #.

Similarly, functions used to GET these parameters are available and
listed in the chapter describing all the ET library routines.

2.2 Example

An example of a program to start an ET system is listed below.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <et.h>

main(int argc, char **argv)
{
 int status, sig_num;
 sigset_t sigwaitset;
 et_sysconfig config;
 et_sys_id id;

 if (argc != 2) {
 printf("Usage: et_start <name>\n");
 exit(1);
 }

 /********************************/
 /* set configuration parameters */
 /********************************/

 if (et_system_config_init(&config) == ET_ERROR) {
 printf("et_start: no more memory\n");
 exit(1);

Creating an ET system –12 –

 }
 /* total number of events */
 et_system_config_setevents(config, 1000);
 /* size of event in bytes */
 et_system_config_setsize(config, 2000);
 /* max number of temporary (specially allocated mem) events */
 /* This cannot exceed total # of events */
 et_system_config_settemps(config, 500);
 /* max number of stations */
 et_system_config_setstations(config, 10);
 /* max number of attachments */
 /* max allowable = ET_ATTACHMENTS_MAX */
 et_system_config_setattachments(config, 10);
 /* max number of processes */
 /* max allowable = ET_PROCESSES_MAX */
 et_system_config_setprocs(config, 10);
 /* remote users’ use broadcast instead of multicast to find me */
 et_system_config_setcast(config, ET_BROADCAST);
 /* remote users broadcast to this port */
 et_system_config_setport(config, ET_BROADCAST_PORT);
 /* remote users broadcast to this IP address */
 et_system_config_setaddress(config, "129.57.35.255");

 /* set ET system filename */
 if (et_system_config_setfile(config,argv[1]) == ET_ERROR) {
 printf("et_start: bad filename argument\n");
 exit(1);
 };

 /*************************/
 /* start ET system */
 /*************************/
 printf("et_start: starting ET system %s\n", argv[1]);
 if (et_system_start(&id, config) != ET_OK) {
 printf("et_start: error in starting ET system\n");
 exit(1);
 }

 /* set level of debug output */
 et_system_setdebug(id, ET_DEBUG_INFO);

 /* turn this thread into a signal handler */
 sigemptyset(&sigwaitset);
 sigaddset(&sigwaitset, SIGINT);
 sigwait(&sigwaitset, &sig_num);
 printf("I got CONTROL-C\n");

 exit(0);
 }

Chapter 3 Using An ET System

In the previous chapter, we learned how to create an ET system, and
in this chapter we’ll learn to use an existing system. This chapter
shows how users can attach to ET systems, define, create and remove
stations, attach to and detach from stations, handle events, and
handle signals.

3.1 Opening an ET System

Opening a system is done by calling “et_open (et_sys_id* id, char
*filename,et_openconfig config)”. The user defines a variable of
type “et_sys_id”and passes its pointer - a value-result argument -
which then gives back an “ID”to the open ET system. In addition,
the filename of an existing ET system and a parameter describing
how the user would like to open the system are passed as parameters
to “et_open”.
There are a number of functions used to create and define the
“config”argument. It is initialized by a call to “et_open_config_init
(et_openconfig *config)”. When the user is finished using the
configuration, “et_station_config_destroy (et_statconfig config)”
must be called in order to properly release all memory used.
After initialization, calls can be made to functions which set various
properties of the specific configuration. Calls to these setting func-
tions will fail unless the configuration is first initialized. The func-
tions used to SET these properties are listed below along with an
explanation for each:

1. et_open_config_setwait(et_openconfig config, int val) :
setting “val”to ET_OPEN_WAIT makes “et_open”block by
waiting until the given ET system is fully functioning or a
set time period has passed before returning. Setting val to
ET_OPEN_NOWAIT makes “et_open”return immediately
after determining whether the ET system is alive or not. If
the system is remote, then broadcasting to find its location
may take up to severa l seconds . The defaul t i s
ET_OPEN_NOWAIT.

Using An ET System –14 –

2. et_open_config_settimeout(et_openconfig config, struct
timespec val) : in ET_OPEN_WAIT mode, this function sets
the maximum amount of time to wait for an alive ET system
to appear. If the time is set to zero (the default), an infinite
time is indicated. If broad/multicasting to find a remote ET
system, it is possible to take up to several seconds to deter-
mine whether the system is alive or not -- possibly exceed-
ing the time limit.

3. et_open_config_sethost(et_openconfig config, char *val) :
this sets the name of the host (or computer) on which the ET
system resides. For opening a local system only, set val to
ET_HOST_LOCAL (the default) or “localhost”(including
quotes). For opening a system on an unknown remote com-
puter only, set it to ET_HOST_REMOTE. For an unknown
ho s t w hic h m ay be l oc a l or r e m ote , s e t i t to
ET_HOST_ANYWHERE. Otherwise set val to the name or
dotted-decimal IP address of the desired host. (See next rou-
tine also).

4. et_open_config_setcast(et_openconfig config, int val) : set-
ting val to ET_BROADCAST (default) means using UDP
broadcast IP packets to determine the location of remote ET
s ys te ms so the y c an b e ope n ed . Se t t in g v a l to
ET_MULTICAST uses the newer UDP multicast IP packets
to do the same. However, setting val to ET_DIRECT makes
a direct connection to the ET system and requires that
“et_open_config_sethost”use the actual host’s name or
“loc a lh os t” an d no t ET _HOST _LOC A L,
ET_HOST_REMOTE, or ET_HOST_ANYWHERE. The tcp
port number used in the direct connection is set by
“et_open_conf ig_serserverport”and defaul ts to
ET_SERVER_PORT, defined in “et.h” as 11111.

5. et_open_config_setTTL(et_openconfig sconfig, int val) :
when using multicasting, set the TTL value. This sets the
number of routers to hop. The default is one which keeps
things on the subnet.

6. et_open_config_setport(et_openconfig config, unsigned
short val) : this sets the port number of the broadcast or mul-
t i c as t c omm u nic a t io ns . T he de fau l t i s
ET_BROADCAST_PORT, defined in “et.h” as 11111.

7. et_open_config_setserverport(et_openconfig config,
unsigned short val) : this sets the port number of the tcp
s e rver t hr e ad o f an ET s ys t em . T he de f au l t i s
ET_SERVER_PORT, defined in “et.h” as 11111.

8. et_open_config_setaddress(et_openconfig config, char
*val) : this sets the IP address of the broadcast or multicast
communications in dotted-decimal form. It is automatically
set to the local subnet broadcast address and if that fails it
defaults to ET_BROADCAST_ADDR (which is defined to
be the author’s local subnet in “et.h”). If multicasting is
used, the address must be explicitly set by this routine.

–15 – Using An ET System

9. et_open_config_setmode(et_openconfig config, int val) :
setting val to ET_HOST_AS_LOCAL (default) means users
which are on the same machine as the ET system (local) will
realize this and take advantage of it. However, setting val to
ET_HOST_AS_REMOTE means users will be treated as if
they were remote even if they are local. All transactions will
be through the ET system’s server and not through shared
memory.

10. et_open_config_setdebugdefault(et_openconfig config,
int *val) : this sets default level of debug output. Set val to:
ET_DEBUG_NONE for no output, ET_DEBUG_SEVERE for
output describing severe errors, ET_DEBUG_ERROR for
output describing all errors, ET_DEBUG_WARN for output
describing warnings and errors, and ET_DEBUG_INFO for
output describing all information, warnings, and errors.

More on remote ET systems can be found in the chapter entitled
Remote ET on page 41. All of the above “set”functions have their
counterpart “get” functions as well.
Once an ET system has been opened, users can use the id as a handle
for that particular system. Users can open more than one system at a
time, referring to each by their respective handles.

3.2 Definition of Stations

3.2.1 Definition

Analogous to the opening or creation of ET systems, users begin by
declaring a variable of type “et_statconfig”. Once this variable is
declared, it must be initialized before further use. Thus users must
also call the function “et_station_config_init(et_statconfig*
sconfig)”.After initialization, calls can be made to functions which
set various properties of the specific configuration. Calls to these
setting functions will fail unless the configuration is first initialized.
When the user is finished using a configuration variable, the user
must call “et_station_config_destroy(et_statconfig sconfig)”with
the configuration as an argument in order to properly release all
memory used.
The functions used to SET station parameters are listed below along
with an explanation for each:

1. et_station_config_setblock(et_statconfig sconfig, int val) :
setting “val”to ET_STATION_BLOCKING makes the sta-
tion block by looking at all events in the system, while set-
ting it to ET_STATION_NONBLOCKING allows the station
to fill up a cue of events and when that is full, events flow to
the next station downstream. The default is blocking.

Using An ET System –16 –

2. et_station_config_setcue(et_statconfig sconfig, int val) :
when in nonblocking mode, this sets the maximum number
of events that are to be in the station’s input list ready for
reading (in so far as it is possible). The default is 10.

3. et_station_config_setprescale(et_statconfig sconfig, int val) :
when in blocking mode, every Nth event of interest is sent
to the user by setting the “val” to N. The default is 1.

4. et_station_config_setuser(et_statconfig sconfig, int val) :
setting “val”to ET_STATION_USER_SINGLE allows only
one user process to attach to this station, while setting it to
ET_STATION_USER_MULTI allows multiple users to
attach. The default is multiuser.

5. et_station_config_setrestore(et_statconfig sconfig, int val) :
when a process dies or detaches from a station, the events it
read but did not write are recovered and sent to a station’s
output list if “val”is set to ET_STATION_RESTORE_OUT.
S im i lar ly , i t can be s e nt to t he inpu t l i s t w i t h
ET_STATION_RESTORE_IN or back to grandcentral sta-
tion with ET_STATION_RESTORE_GC. The default is res-
toration to the output list.

6. et_station_config_setselect(et_statconfig sconfig, int val) :
for selection of all events and no filtering set “val”to
ET_STATION_SELECT_ALL. For selection using a user-
defined routine loaded through a shared library set it to
ET_STATION_SELECT_USER. For mimicking the DD sys-
tem, set it to ET_STATION_SELECT_MATCH. The last
option takes an event’s array of control integers and does a
comparison with the station’s selection integers or words.
The results of all logical comparisons are ORed together. An
event is selected if result = 1. See below for more details. The
default mode is ET_STATION_SELECT_ALL.

7. et_station_config_setselectwords(et_statconfig sconfig, int *val) :
the argument is an array of integers used when the station
select mode is set to ET_STATION_SELECT_MATCH or
possibly ET_STATION_SELECT_USER (depending on
what algorithm a user-defined, event selection routine
uses). For DD users, it is identical to the old “p2ctl”element
of the old “fmode”structure. The default is to set all integers
to a value of “-1”.

8. et_station_config_setlib(et_statconfig sconfig, char *val) :
for a select mode of ET_STATION_SELECT_USER, “val”is
the name of the shared library containing the function to be
used for selecting events.

9. et_station_config_setfunction(et_statconfig sconfig, char *val) :
for a select mode of ET_STATION_SELECT_USER, “val”is
the name of the function to be used for selecting events.

Just a few notes on some of the details. When selecting the
“ET_STATION_RESTORE_IN”mode for event restoration, be
aware of a few things. If there is only one process attached to such a

–17 – Using An ET System

station and it dies, the events go to the output list in order to prevent
them from being lost to a station with no event readers. If there is
more than one process attached and one dies, its events will be put
into the input list with the assumption that the recovered events are
higher in priority to those already in the station’s input list. To be
exact, the recovered high priority events are placed “above”(sooner
to be read) all other events, and the recovered low priority events are
placed below high priority but above all other low priority events.
The mode denoted by ET_STATION_SELECT_MATCH has the
following behavior. A check is made to see if the first element of the
station’s selection array is equal to -1. If it is, then the first element of
the event’s control array is ignored and the event is not marked for
selection. Similar comparisons continue for each element of the
arrays. Thus, if all elements of a station’s selection array are set to -1,
the event will NOT be selected. If the first element of the station’s
selection array is not -1 but is equal to the first element of the event’s
control array, then the event is selected. If the bitwise AND (&) of the
station’s and event’s second elements is true, then the event is
selected. This pattern is repeated with the even elements 0,2,4, 6, ...
compared for equality and the odd elements 1, 3, 5, ... compared for
bitwise AND. If any of the comparisons are true, then the event is
selected. This is the logic employed by the old DD system in its
“conditional” mode.
Similar function to those mentioned above are available to GET the
values associated with a station configuration.

3.2.2 Examples

Since one of the more difficult tasks facing the first time user is how
to properly configure a station, let’s look at two examples first:

/* declarations */
et_stat_config sconfig;
/* set values */
et_station_config_init(&sconfig);
et_station_config_setselect(sconfig, ET_STATION_SELECT_ALL);
et_station_config_setblock(sconfig, ET_STATION_NONBLOCKING);
et_station_config_setuser(sconfig, ET_STATION_USER_SINGLE);
et_station_config_setrestore(sconfig, ET_STATION_RESTORE_GC);
et_station_config_setcue(sconfig, 20);

Here is a station to which only 1 user may attach. It accepts all events
no matter what values the selection integers have. It is nonblocking,
meaning that once the system fills up its input list with a maximum
of 20 events, all other events will bypass the station and be placed
somewhere downstream. If the user process should die, the events
that it owns will be placed back in grandcentral station, and no one
else will get them.
A more complicated example can be seen below:

/* declarations */
int selections[] = {17,22,-1,-1};

Using An ET System –18 –

et_stat_config sconfig;
/* set values */
et_station_config_init(&sconfig);
et_station_config_setselect(sconfig, ET_STATION_SELECT_ALL);
et_station_config_setblock(sconfig, ET_STATION_BLOCKING);
et_station_config_setuser(sconfig, ET_STATION_USER_MULTI);
et_station_config_setrestore(sconfig, ET_STATION_RESTORE_IN);
et_station_config_setprescale(sconfig, 5);
et_station_config_setselect(sconfig, ET_STATION_SELECT_USER);
et_station_config_setselectwords(sconfig, selections);
if (et_station_config_setlib(sconfig, "/stuff/libet_user.so") == ET_ERROR) {
 printf(" cannot set library\n");
}
if (et_station_config_setfunction(sconfig, "et_my_function") == ET_ERROR) {
 printf("cannot set function\n");
}

In the above example, there is a station to which multiple users can
attach. Its select mode (ET_STATION_SELECT_USER) says that the
user will be supplying a function in a shared library to determine
which events are to be selected. Since this station is set to block
events, all events which meet its selection criteria are placed in its
input list, even if it means slowing the whole ET system down to a
crawl. Actually, the prescale factor imposes an additional selection
criterion since it is in blocking mode. Thus, only every 5th event
which passes through the user’s filter gets placed in the station’s
input list. Its restore mode says that if this user process should ever
die, the events that it currently owns will be placed in the station’s
input list.

3.3 Creation & Removal of Stations

Once a configuration is defined, it is passed to the function
“et_station_create(et_sys_id id, et_stat_id *stat_id, char
*stat_name, et_statconfig sconfig)”.In addition to the arguments, id
and sconfig, which have already been covered, the user must supply
a unique name and is returned a station identification number
“stat_id”. This station id is used in other station-related routines.
Possible errors returned by the function “et_station_create”are
ET_ERROR_EXISTS if a station by that name exists already,
ET_ERROR_TOOMANY if the user is the second user to try to attach
to a station designated for one user only, or ET_ERROR for other
unrecoverable errors. If the user is a remote client, the error
ET_ERROR_REMOTE indicates a bad arg or not being able to allo-
cate memory, and ET_ERROR_READ & ET_ERROR_WRITE indi-
cate problems with the network communication.
R em ovin g s t a t ion s c an be ac co mpl i s he d by c a l l in g
“et_station_remove(et_sys_id id, et_stat_id stat_id)”.

–19 – Using An ET System

3.4 Attaching to and Detaching from Stations

Until a user’s process attaches to a station, the station is placed in an
idle mode, meaning, that it is not participating in the flow of events
- it is getting by-passed. Once a process attaches to a station, it
becomes active and begins to receive events. This logic ensures that
events do not get stuck in stations with no one to process them or that
the entire flow of events does not come to a grinding halt.
Attach to a station by calling “et_station_attach(et_sys_id id,
et_stat_id stat_id, et_att_id *att)”. This routine returns a unique
attachment number, “att”, by which a process identifies itself in
certain function calls. For example, when reading and writing
events, this parameter is required. In this manner, a single process
can attach to different stations and yet be differentiated by the ET
system. With this type of interface, for example, a user could conceiv-
ably have multiple threads with each attached to the same station on
a different attachment. The idea is that this id represents a single
attachment to a single station.
To detach from a station call “et_station_detach(et_sys_id id,
et_att_id att)”.If a user is the last one to detach from a station, all of
the events left in the station’s input list are passed to the output list.
In addition, after a user detaches, a search is made for any events that
were read but not written back into the ET system by “att”.They are
recovered and placed according to the station’s property set by the
function “et_station_config_setrestore”.

3.5 Handling Events

After opening an ET system, creating a station, and attaching to it,
users are ready to start creating, reading and writing events.

3.5.1 Creating

When creating an new event, users are called producers. There are
two routines that can be used for doing this. The first is for getting a
single, blank event by calling “et_event_new(et_sys_id id, et_att_id
att, et_event **pe, int wait, struct timespec *time, int size)”.At this
point users are familiar with the first two arguments “id”,and “att”.
The third is a pointer to a pointer to an event. In the code, declare a
pointer to an event (i.e. et_event *pe) and pass its address. Upon a
successful return, “pe”points to a new event. The fourth arg, “wait”,
is a flag that can be set by using some predefined macros. By setting
this “wait”to ET_SLEEP, the call will block until the next free event
is available. By setting it to ET_ASYNC, the call returns immediately
with a status. And by setting it to ET_TIMED, the call waits for the
amount of time given by the “time”arg if no events are immediately
available. Finally, the last arg is the requested size in bytes. If the size
is larger than those the system was created with, the newly created
event will be declared a special “temporary”event and will allocate
the necessary memory. (This, of course, slows things down).

Using An ET System –20 –

Similarly the user can call “et_events_new(et_sys_id id, et_att_id
att, et_event *pe[], int wait, struct timespec *time, int size, int num,
int *nread)”for obtaining an array of new events. In this case, “pe”
is an array of pointers to events, “num”in the number of events
desired, and “nread”is the number of events actually read and
placed into the array (which may be less than what was asked for).

3.5.2 Reading

When reading events, users are called consumers. There are two
routines that can be used for reading. The first is for reading single
events and has the form “et_event_get(et_sys_id id, et_att_id att,
et_event **pe, int wait, struct timespec *time)”.The arguments are
the same as those for creating a new event but without the size.
The second type of routine is for reading an array of events by using
the call, “et_events_get(et_sys_id id, et_att_id att, et_event **pe, int
wait, struct timespec *time, int num, int *nread)”. The arguments
are almost the same as for reading single events with the exception
that the user passes an array of pointers to events. There are also
additional arguments specifying the number of events the user
wants to read and the number actually read. Although less events
may be returned, the user will never get more than the amount asked
for.

3.5.3 Writing

After reading an event, the user has access to a number of its proper-
ties for manipulation. Routines to accomplish that are given in the
following list:

1. et_event_setpriority(et_event *pe, int pri) : this routine sets
the priority of an event, “pri”,to be ET_HIGH or ET_LOW
(default). A high priority means that such an event gets
placed below other high priority but above low priority
events when placed in a station’s input or output list. Thus,
high priority events are always the first to be read. No other
guarantees are made.

2. et_event_getpriority(et_event *pe, int *pri) : this routine
returns the priority of an event.

3. et_event_setlength(et_event *pe, int len) : sets the length or
size of the event’s data in bytes.

4. et_event_getlength(et_event *pe, int *len) : returns the
length of the event’s data in bytes.

5. et_event_setcontrol(et_event *pe, int con[], int num) : sets
the control information of an event. The “con”argument is
an array of integers which control the flow of the event
through the ET system, and the “num”argument gives the
size of the array. The DD system had ctlw1, ctlb1, ctlw2, and
ctlb2 as four integers used to carry this information. These

–21 – Using An ET System

integers are now replaced respectively by an array of inte-
gers. The size of this array is determined at compile time by
“ET_STATION_SELECT_INTS“ which defaults to four.

6. et_event_getcontrol(et_event *pe, int con[]) : gets the
event’s array of control information.

7. et_event_getdata(et_event *pe, void **data) : this routine
returns a void pointer to the start of an event’s data location.

8. et_event_getdatastatus(et_event *pe, int *status) : this rou-
tine gets the status of an event’s data. It can be either
ET_DATA_OK, ET_DATA_POSSIBLY_CORRUPT, or
ET_DATA_CORRUPT (not currently used). Data is
ET_DATA_OK unless a previous user got the event from
the system and then exited or crashed without putting it
back. If the ET system recovers that event and puts in back
in to the s ys te m, i t s s ta tu s b e c ome s
ET_DATA_POSSIBLY_CORRUPT as a warning to others.

9. et_event_setendian(et_event *pe, int endian) : though nor-
mally the ET system automatically keeps track of the endi-
anness of an event’s data, this routine can override and
directly set the endian value of the data. It may be
ET _END IA N_BI G, ET_E ND IA N_LIT T LE,
ET_ENDIAN_LOCAL (same endian as local host),
ET_ENDIAN_NOTLOCAL (opposite endian as local host),
or ET_ENDIAN_SWITCH. See the chapter Remote ET.

10. et_event_getendian(et_event *pe, int *endian) : this rou-
tine returns the endian of an event’ s data - either
ET_ENDIAN_BIG or ET_ENDIAN_LITTLE. See the chap-
ter Remote ET.

11. et_event_needtoswap(et_event *pe, int *swap) : this rou-
tine tells the caller if an event’s data needs to be swapped or
not by returning either ET_SWAP or ET_NOSWAP. See the
chapter Remote ET.

12. et_event_CODAswap(et_event *pe) : this routine swaps
the data of an event in CODA format.

After setting an event’s priority, data length, control array and
perhaps its endian value, and writing data, the user is finished with
the event and wishes to place it into the ET system. Or perhaps the
user has only read the data and is done with the event. In any case,
the event must be written back into the system by two possible
means. Either write a single event with ”et_event_put(et_sys_id id,
et_att_id att, et_event *pe)”or write multiple events with
“et_events_put(et_sys_id id, et_att_id att, et_event *pe[], int
num)”.In the latter case, the user gives the number “num”of events
to put back in the array “pe”.All events will always be successfully
written and will never block as a station’s output list has enough
room for all events in the whole ET system.
The ET system checks to see if the “att”that read the event is the
same one that is writing it. If it isn’t, the call returns an error and
nothing is written.

Using An ET System –22 –

3.5.4 Dumping

After reading existing events or creating new ones, it’s possible that
these events may no longer be of interest to the user of any other user
on the system. In that case, one may dump or recycle these events by
calls to two routines. They are identical to the routines et_event(s)_put
in their arguments. The first is “et_event_dump(et_sys_id id,
et_att_id att, et_event *pe)”and dumps a single evernt. Similarly,
“et_events_dump(et_sys_id id, et_att_id att, et_event *pe[], int
num)” dumps multiple events.

3.6 Closing an ET System

When finished using an ET system, it can be removed from a process’
memory by using the “et_close(et_sys_id id)”routine. This unmaps
the ET system memory from the process and makes it inaccessible. It
also stops the heartbeat and system-heartbeat-monitor threads. In
order to close, all attachments must be detached first. However,
there is another function “et_forcedclose(et_sys_id id)”which will
automatically do all the detaching first. Of course, the ET system
continues to function for other processes as before.

Chapter 4 ET Programming Details

This chapter gives some details on programming with an ET system.
It answers questions about program flow, handling signals, useful
ET library functions, how to define user functions for selecting
events, and various odds & ends.

4.1 Program Flow

Being such a complicated, multithreaded, multiprocess system, it is
probably not at all obvious how a user would put all the calls to the
ET library together in a coherent manner. Given below is a bare
bones outline of how a user’s process should look.

/* declare variables */
int status;
et_statconfig sconfig;
et_openconfig openconfig;
et_event *pe;
et_sys_id id;
et_stat_id my_stat
et_att_id attach;

/* define station */
et_station_config_init(&sconfig);
et_station_config_setblock(sconfig, ET_STATION_BLOCKING);
et_station_config_setselect(sconfig, ET_STATION_SELECT_ALL);
et_station_config_setuser(sconfig, ET_STATION_USER_SINGLE);
et_station_config_setrestore(sconfig, ET_STATION_RESTORE_OUT);

/* open ET system */
et_open_config_init(&openconfig);
et_open(&id,” /tmp/my_et_system_file”, openconfig);
et_open_config_destroy(openconfig);

/* create and attach to station */
et_station_create(id, &my_stat, “my_station”, sconfig);
et_station_attach(id, my_stat, &attach);

while (1) {

ET Programming Details –24 –

 while(et_alive(id)) {
 status = et_event_get(id, attach, &pe, ET_SLEEP, NULL);
 status = et_event_put(id, attach, pe);
 }
 et_wait_for_alive(id);
}

Besides defining a station, the first thing to do is to initialize with
“et_open”. This maps the given file into the user’s memory giving
access to the ET system. It also starts a heartbeat and begins to listen
for the ET system’s heartbeat. Even if the ET system should die and
resurrect, this need not be repeated. However, after an”et_close”it
will have to be repeated to regain access to the ET system.
Create any desired stations, then attach to one of them. By attaching,
one receives a unique identifier (“attach”in this case). This will be
used in the rest of the transactions.
Once finished attaching, one can read and write events, checking
every now and then to see if the ET system is alive. If the ET system
dies while the user is in a read waiting for events, the read call will
return with the error ET_ERROR_DEAD. Although not shown in
this code, be sure to carefully check the status of each read and write
statement.
Popping out of the read/write while loop, one reaches the call to
“et_wait_for_alive”which simply waits for a living ET system (one
with a heartbeat). If a dead system resurrects, the flow should go
back to reading and writing events. Remember that when an ET
system is restarted, it looks at the existing shared memory and is able
to pick up where it left off (at least that is how it is designed). All
events at the time of the crash will be lost but stations and attach-
ments should remain intact.

4.2 Handling Signals

Because the ET software uses multiple POSIX threads, signal
handling must be done carefully. Be sure to use POSIX routines and
only those that are thread safe. Refer to the book Programming with
POSIX Threads by David Butenhof for a good reference on this
subject.
Functions that meet this standard are “pthread_sigmask”,
“pthread_kill”,“sigwait”,“sigwaitinfo”,and”sigtimedwait”.When
masking signals use the function “pthread_sigmask”NOT “sigproc-
mask” since its behavior in a threaded process is undefined.
The best way to handle things is to initially block or mask all signals.
Once the user has called “et_open”, the new threads that were
started as a result of calling it will also have all signals blocked
because the new threads inherit the signal mask of its parent thread.
Once open, handle the signal catching in the main thread or some
additional thread spawned from the main thread (i.e. the user’s
code). See the examples in the example chapter.

–25 – ET Programming Details

4.3 Defining Functions for Event Selection

Should the user wish to provide an event selection capability for a
station not already present in the ET system, this may be accommo-
dated by defining a function especially for that purpose. The func-
tion must be part of a shared library and must have the arguments:
et_my_function (et_sys_id id, et_stat_id stat_id, et_event *pe) .
This function will be called whenever its associated station is
collecting events to gather into its input list. The return value must
be one for a selected event and zero otherwise.
The function-writer has access to the event’s data through functions
mentioned in the previous chapter, Similarly, there is access to infor-
mation about the station’s configuration through the following ET
library functions:

1. et_station_getattachments(et_sys_id id, et_stat_id stat_id,
int *numatts) : gets the number of attachments to a station.

2. et_station_getstatus(et_sys_id id, et_stat_id stat_id, int
*status) : gets a station’s status.

3. et_station_getblock(et_sys_id id, et_stat_id stat_id, int
*block) : gets a station’s blocking mode

4. et_station_getrestore(et_sys_id id, et_stat_id stat_id, int
*restore) : gets a station’s restore mode

5. et_station_getuser(et_sys_id id, et_stat_id stat_id, int
*user) : gets a station’s user mode

6. et_station_getprescale(et_sys_id id, et_stat_id stat_id, int
*prescale) : gets a station’s prescale value

7. et_station_getcue(et_sys_id id, et_stat_id stat_id, int *cue)
: gets a station’s cue value

8. et_station_getselect(et_sys_id id, et_stat_id stat_id, int
*select) : gets a station’s select mode

9. et_station_getselectwords(et_sys_id id, et_stat_id stat_id,
int *select) : gets a station’s selection integer array

10. et_station_getlib(et_sys_id id, et_stat_id stat_id, char *lib)
: gets a station’s shared library name

11. et_station_getfunction(et_sys_id id, et_stat_id stat_id,
char *function) : gets a station’s function name

12. et_station_getinputcount(et_sys_id id, et_stat_id stat_id,
int *cnt) : gets the number of events in a station’s input list.
This function may not be so useful in that this data can
change so quickly.

13. et_station_getoutputcount(et_sys_id id, et_stat_id stat_id,
int *cnt) : gets the number of events in a station’s output list.
This function may not be so useful in that this data can
change so quickly.

ET Programming Details –26 –

Using these functions, all relevant information about the ET system
necessary to select events for a particular station can be obtained.

4.4 Useful ET Library Functions

There are a number of other routines available to the ET system
users. Use the following to get information about stations:

1. et_station_name_to_id(et_sys_id id, et_stat_id *stat_id,
char *name) : returns a station id given a station’s name.

2. et_station_isattached(et_sys_id id, et_stat_id stat_id,
et_att_id att) : tells if “att” is attached to a station.

3. et_station_exists(et_sys_id id, et_stat_id *stat_id, char
*stat_name) : tells if a station exists and returns its id.

There are routines available to get information about an ET system:
1. et_system_getnumevents(et_sys_id id, int *numevents) :

tells how many events a system has.
2. et_system_geteventsize(et_sys_id id, int *eventsize) : tells

the size in bytes of a system’s events.
3. et_system_getlocality(et_sys_id id, int *locality : tells

whether the ET system is on a remote node or is local.
4. et_system_getpid(et_sys_id id, pid_t *pid) : gives the unix

process id or pid or the ET system process.
5. et_system_getheartbeat(et_sys_id id, int *heartbeat) : tells

the heartbeat count.
6. et_system_getattsmax(et_sys_id id, int *attsmax) : tells the

max number of attachments allowed.
7. et_system_getstationsmax(et_sys_id id, int *stationsmax) :

tells the max number of stations allowed.
8. et_system_gettempsmax(et_sys_id id, int *tempsmax) :

tells the max number of temporary events.
9. et_system_getprocsmax(et_sys_id id, int *procsmax) : tells

the max number of processes allowed to open the ET system
locally.

10. et_system_getattachments(et_sys_id id, int *atts) : tells the
current number of attachments.

11. et_system_getstations(et_sys_id id, int *stations) : tells the
current number of stations.

12. et_system_gettemps(et_sys_id id, int *temps) : tells the
current number of temporary events.

13. et_system_getprocs(et_sys_id id, int *procs) : tells the cur-
rent number of processes with the ET system open locally.

14. et_system_gethost(et_sys_id id, char *host) : tells which
host computer the ET system is running on.

–27 – ET Programming Details

15. et_system_getserverport(et_sys_id id, unsigned short
*port) : tells the port number of the ET system’s TCP server
thread.

Two routines affecting user processes are:
1. et_wakeup_attachment(et_sys_id id, et_att_id att) : this

routine wakes up a particular attachment which is currently
blocked on an event read call on a particular station.

2. et_wakeup_all(et_sys_id id, et_stat_id stat_id) : this rou-
tine wakes up all attachments which are currently blocked
on an event read call on a particular station.

Then there are:
1. et_alive(et_sys_id id) : this return 1 if the ET system is alive

and 0 if it is not.
2. et_wait_for_alive(et_sys_id id) : this waits indefinitely

until the ET system is alive and then it returns.

4.5 How to Avoid Blocking Forever

Be careful when attaching to more than more station at a time.
Multiple attachments and blocking stations are a bad combination. If
one is reading and writing from a blocking station, there is the poten-
tial to lock up the whole ET system.
The problem arises when the read and write statements of a program
are done serially in a single logical loop. Without going into the
details, in some circumstances, events all pile up in the input list of
one station while the user is waiting to read events from another
station. Check your logic carefully.
Similar problems can arise when producing events at an attachment
that is also being used for reading or consuming events. The diffi-
culty is that if the user blocks when calling et_event_new, all the
events may have previously piled up in the user’s station’s input list.
In this situation the call to et_event_new will never return.

4.6 Includes , Flags, and Libraries

Using the ET system library functions requires users to include the
file “et.h” in any programs, as in the following:
#include <et.h>
The name of the ET shared library is libet.so, and the name of the
static library is libet.a .
On Solaris, users will also need to link against three additional
libraries, -lpthread -lposix4 -lthread, as well as the math and socket
libraries and use the multithreading compiling flag “-mt”.

ET Programming Details –28 –

On Linux, users must link against -lpthread and the math and socket
libraries. Since pthread mutexes cannot be shared by multiple
processes, the compile flag “-DMUTEX_NOSHARE”must be used.
The effect of this flag is to treat local clients on Linux as if they were
remote - meaning they access the shared memory through the ET
server and sockets. However, because they are local, instead of
sending all event data through sockets, only pointers to the shared
memory are sent. The clients can map the shared memory and so
obtain access to the data directly. Of course, all of this is transparent
to the user.
At this time the ET system has been compiled on Solaris 2.5/2.6 with
no problems. It has also been compiled on Redhat Linux 6.0 and
earlier versions. However, be aware that there are bugs in the
pthread library in Redhat 5.1 and earlier that prevent an ET system
from functioning properly (Redhat 5.2 was never used so its library
may or may not be buggy).
On both Solaris and Linux, pthread mutexes have the default
behavior such that if a mutex is locked by some thread, any other
thread may unlock it. This is non-portable behavior and must not be
relied on according to the man pages. However, it’s use is very
convenient when recovering from a crashed process which has
locked one or more mutexes. The alternative method to recover from
such situations is to re-initialize the locked mutexes. Such behavior
can be implemented at compile time by specifying the flag “-
DMUTEX_INIT”.

4.7 Debug Output

To help in finding problems and finding out information about an
active ET system, users can adjust the debug output printed by the
system. The two routines used for this purpose are:

1. et_system_setdebug(et_sys_id id, int debug) : sets the level
of debug output desired.

2. et_system_getdebug(et_sys_id id, int *debug) : gets a sys-
tem’s current debug level.

The possible values of the argument “debug” are:
1. ET_DEBUG_NONE - this value results in no output
2. ET_DEBUG_SEVERE - this value outputs only the most

severe errors
3. ET_DEBUG_ERROR - this value outputs all errors
4. ET_DEBUG_WARN - this value outputs all errors and all

warnings
5. ET_DEBUG_INFO - this value outputs everything includ-

ing informational output

–29 – ET Programming Details

The debug leve l of an ET system or c l ient defaul t s to
ET_DEBUG_ERROR. Notice that the debug level of a system can
only be set after the call to “et_open”or “et_system_start.”This
means that in order to get output other than errors from these two
routines, the source code must be changed and recompiled.
Normally, by default, debug output is simply printed by means of
“printf”statements. If the user wishes to use the coda routine
“daLogMsg”to output debug messages, simply recompile ET with
the flag “-DWITH_DALOGMSG”. Be sure to link with the library
libcmlog.so when doing so.

4.8 TCL/TK Interface

A Tcl/Tk interface is provided in the file et_wish.c . It can be
compiled with the command “make et_wish”. Access to an ET
system is provided with the “et_connect <et filename>”command
which returns a handle used to get information about the system.
Similarly, the connection to an ET system can be closed with the
“et_disconnect <et_id>” command.
There are five commands used to get information about a system:

1. et_sys_config_info <et_id> which gets static system config-
uration information which should not change

2. et_sys_dynamic_info <et_id> which gets dynamic system
information which will be constantly changing

3. et_stat_config_info <et_id> which get static station infor-
mation that should not change

4. et_stat_dynamic_info <et_id> which gets dynamic station
information which will be constantly changing

5. et_proc_info <et_id> which gets all information about pro-
cesses

6. et_att_info <et_id> which gets all information about
attachments

The format of data returned from each of these tcl/tk commands is
listed respectively below:

1. {system_pid, max#_events, event_size, max#_tempevents,
max#_stations, max#_processes, max#_attachments,
et_filename}

2. {heartbeat, #_tempevents, #_stations, #_processes,
#_attachments}

3. {{station_name, user_mode, restore_mode, block_mode,
prescale, cue, select_mode, { l ist of selectwords} ,
function_name, sharedlib_name}, {next station}, ... }

4. {{station_name, status, #_attachments, {list of attachment
ids}, {input_list_count, events_try, events_in, events_out},
{output_list_count, events_try, events_in, events_out}},
{next station}, ... }

ET Programming Details –30 –

5. {{process_id, unix_pid, heartbeat, #_attachments, {list of
attachment ids }}, {next process}, ... }

6. {{attachment_id, process_id, station_id, blocked,
events_put, events_get, events_make}, {next attachment}, ...
}

Just a couple of notes. The return for item 4 include ”events_try”
which - for blocking stations - is simply an a count of all the events
which match the station’s criteria. Not all of these are accepted due
to the prescale factor. Also, the “events_out”of the input list and the
“events_in”of the output list are not monitored and will return 0.
Finally, the “blocked”entry of item 6 is one if the attachment is
blocked in a read statement and zero otherwise.

4.9 Monitoring an ET System

There is a program provided to monitor an ET system. It simply
maps the ET system into its memory if it’s local or gets data over the
network if remote and prints out the values that it reads there. If the
reader does run into trouble, this program can help isolate any prob-
lems. The usage is:

et_monitor [-f <et name>] [-p <update period (sec)>]
[-h <host>] [-r]

If an ET system name is not given it defaults to /tmp/
et_sys_<session> where session is the value of the environmental
variable SESSION. It defaults to the local host with a period of 5
seconds between updates. If the user wants the monitor to commu-
nicate with the ET system as if remote even if it’s local, use the -r
option. The value of <host> can be provided in various formats. It
can be an IP address in dotted-decimal form, the name of the host
with or without the domain, “.local”or “localhost”which means
look locally only, “.remote”which means look remotely only, or
“.anywhere”which means any local or remote node which responds.

Chapter 5 Examples

5.1 Event Producer

An example of a program written to produce events for an ET system
is adapted from the file et_producer1.c. It follows below:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>
#include <limits.h>
#include <et.h>

#define NUMLOOPS 20000
#define CHUNK 10

main(int argc,char **argv)
{
 int i, j, size, status;
 int freq, freq_tot=0, freq_avg, iterations=1, count;
 et_att_id attach1;
 et_sys_id id;
 et_openconfig openconfig;
 et_event *pe[CHUNK];
 struct timespec t1, t2;
 double time;

 /* handy data for testing */
int numbers[] = {0,1,2,3,4,5,6,7,8,9};
char *stuff[] = {“One”,”Two”,”Three”,”Four”,”Five”,”Six”,”Seven”,”Eight”,”Nine”,”Ten”};
int control[] = {17,8,-1,-1}; /* 17 & 8 are arbitrary */

 /* pass the ET filename and event size on command line */
 if ((argc != 2) && (argc != 3)) {
 printf(“Usage: et_producer <et_filename> [<eventsize>]\n”);
 exit(1);
 }
 size = 10;

Examples –32 –

 if (argc == 3) {
 size = atoi(argv[2]);
 }

 /* open local ET system and don’t wait for it */
 et_open_config_init(&openconfig);
 if (et_open(&id, argv[1], openconfig) != ET_OK) {
 printf(“et_producer: et_open problems\n”);
 exit(1);
 }
 et_open_config_destroy(openconfig);

 /* set level of debug output (everything) */
 et_system_setdebug(id, ET_DEBUG_INFO);

 /* attach to grandcentral station */
 if (et_station_attach(id, ET_GRANDCENTRAL, &attach1) < 0) {
 printf(“et_producer: error in station attach\n”);
 exit(1);
 }

 /* while the ET system is alive, do the following loop */
 while (et_alive(id)) {
 /* read time for future statistics calculations */
 clock_gettime(CLOCK_REALTIME, &t1);
 /* loop NUMLOOPS times before printing out statistics */
 for (j=0; j < NUMLOOPS ; j++) {
 /* get CHUNK new events at a time */
 status = et_events_new(id, attach1, pe, ET_SLEEP, NULL, size, CHUNK, &count);
 if (status == 0) {
 /* everything is OK */;
 }
 else if (status == ET_ERROR_DEAD) {
 printf(“et_producer: request detach\n”);
 break;
 }
 else if (status == ET_ERROR_TIMEOUT) {
 printf(“et_producer: got timeout\n”);
 break;
 }
 else if (status == ET_ERROR_EMPTY) {
 printf(“et_producer: no events\n”);
 break;
 }
 else if (status == ET_ERROR_BUSY) {
 printf(“et_producer: grandcentral is busy\n”);
 break;
 }
 else if (status == ET_ERROR_WAKEUP) {
 printf(“et_producer: someone told me to wake up\n”);
 break;
 }
 else if (status != ET_OK) {
 printf(“et_producer: request error\n”);
 goto error;
 }

 /* write data, set priority, set control values here */
 if (1) {

–33 – Examples

 void *pdata;
 for (i=0; i < count; i++) {
 /*allow et_client modes 3 & 4 to work (see et_client.c below */
 et_event_setcontrol(pe[i], control, 4);
 et_event_getdata(pe[i], &pdata);
 memcpy(pdata, (const void *) &numbers[i], sizeof(int));
 et_event_setlength(pe[i], sizeof(int));
 }
 }

 /* put events back into the ET system */
 status = et_events_put(id, attach1, pe, count);
 if (status == ET_OK) {
 ;
 }
 else if (status == ET_ERROR_DEAD) {
 printf(“et_producer: put detach\n”);
 break;
 }
 else if (status != ET_OK) {
 printf(“et_producer: put error\n”);
 goto error;
 }
 } /* for NUMLOOPS */

 /* statistics */
 clock_gettime(CLOCK_REALTIME, &t2);
 time = (double)(t2.tv_sec - t1.tv_sec) + 1.e-9*(t2.tv_nsec - t1.tv_nsec);
 freq = (count*NUMLOOPS)/time;
 /* if numbers get too big, start over */
 if ((INT_MAX - freq_tot) < freq) {
 freq_tot = 0;
 iterations = 1;
 }
 freq_tot += freq;
 freq_avg = freq_tot/iterations;
 iterations++;
 printf(“et_producer: %d Hz, %d Hz Avg.\n”, freq, freq_avg);

 /* if ET system is dead, wait here until it comes back */
 if (!et_alive(id)) {
 et_wait_for_alive(id);
 }
 } /* while(alive) */

 error:
 printf(“et_producer: ERROR\n”);
 exit(0);
}

5.2 Event Consumer

An example of a program written to consume events produced by an
ET system is adapted from the file et_client.c. It follows below:

#include <stdio.h>

Examples –34 –

#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>
#include <thread.h>
#include <et.h>

#define NUMEVENTS 200000
#define CHUNK 100

main(int argc,char **argv)
{
 int i, j, status, swtch, numread, totalread=0;
 int con[ET_STATION_SELECT_INTS];
 et_statconfig sconfig;
 et_openconfig openconfig;
 et_event *pe[CHUNK];
 et_att_id attach1;
 et_stat_id my_stat;
 et_sys_id id;
 int selections[] = {17,15,-1,-1}; /* 17 & 5 are arbitrary */

 if (argc != 4) {
 printf(“Usage: et_client <et_filename> <station_name> <mode>\n”);
 exit(1);
 }

 /* open local ET system and don’t wait for it */
 et_open_config_init(&openconfig);
 if (et_open(&id, argv[1], openconfig) != ET_OK) {
 printf(“et_client: et_open problems\n”);
 exit(1);
 }
 et_open_config_destroy(openconfig);

 /* User selects which type/mode of station to create - got 6 choices.
 * (Of course, many more combinations of settings are possible.)
 */
 swtch = atoi(argv[3]);

 /* set some common values */
 et_station_config_init(&sconfig);
 et_station_config_setuser(sconfig, ET_STATION_USER_MULTI);
 et_station_config_setrestore(sconfig, ET_STATION_RESTORE_OUT);
 et_station_config_setprescale(sconfig, 5);
 et_station_config_setcue(sconfig, 20);

 if (swtch==1) {
 /* DD system “all” mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_ALL);
 et_station_config_setblock(sconfig, ET_STATION_BLOCKING);
 }
 else if (swtch==2) {
 /* DD system “on req” mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_ALL);
 et_station_config_setblock(sconfig, ET_STATION_NONBLOCKING);
 }

–35 – Examples

 else if (swtch==3) {
 /* DD system “condition” mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_MATCH);
 et_station_config_setblock(sconfig, ET_STATION_BLOCKING);
 et_station_config_setselectwords(sconfig, selections);
 }
 else if (swtch==4) {
 /* new non-blocking “condition” mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_MATCH);
 et_station_config_setblock(sconfig, ET_STATION_NONBLOCKING);
 et_station_config_setselectwords(sconfig, selections);
 }
 else if (swtch==5) {
 /* user’s condition, blocking mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_USER);
 et_station_config_setblock(sconfig, ET_STATION_BLOCKING);
 et_station_config_setselectwords(sconfig, selections);
 if (et_station_config_setfunction(sconfig, “et_my_function”) == ET_ERROR) {

printf(“et_client: cannot set function\n”);
exit(1);

 }
 if (et_station_config_setlib(sconfig, “/.../libet_user.so”) == ET_ERROR) {
 printf(“et_client: cannot set library\n”);

exit(1);
 }
 }
 else if (swtch==6) {
 /* user’s condition, nonblocking mode */
 et_station_config_setselect(sconfig, ET_STATION_SELECT_USER);
 et_station_config_setblock(sconfig, ET_STATION_NONBLOCKING);
 et_station_config_setselectwords(sconfig, selections);
 if (et_station_config_setfunction(sconfig, “et_my_function”) == ET_ERROR) {

printf(“et_client: cannot set function\n”);
exit(1);

 }
 if (et_station_config_setlib(sconfig, “/.../libet_user.so”) == ET_ERROR) {
 printf(“et_client: cannot set library\n”);

exit(1);
 }
 }

 /* set level of debug output */
 et_system_setdebug(id, ET_DEBUG_INFO);

 /* create the station */
 if ((status = et_station_create(id, &my_stat, argv[2], sconfig)) < ET_OK) {
 if (status == ET_ERROR_EXISTS) {
 /* my_stat contains pointer to existing station */;
 printf(“et_client: station already exists\n”);
 }
 else if (status == ET_ERROR_TOOMANY) {
 printf(“et_client: too many stations created\n”);
 goto error;
 }
 else {
 printf(“et_client: error in station creation\n”);
 goto error;
 }
 }

Examples –36 –

 et_station_config_destroy(sconfig);

 /* attach to newly created station */
 if (et_station_attach(id, my_stat, &attach1) < 0) {
 printf(“et_client: error in station attach\n”);
 goto error;
 }

 /* loop, while ET system is alive, to read and write events */
 while (et_alive(id)) {
 /* example of reading array of up to “CHUNK” events */
 status = et_events_get(id, attach1, pe, ET_SLEEP, NULL, CHUNK, &numread);

 if (status == ET_OK) {
 /* everything is OK */ ;
 }
 else if (status == ET_ERROR_DEAD) {
 printf(“et_client: detach\n”);
 goto end;
 }
 else if (status == ET_ERROR_TIMEOUT) {
 printf(“et_client: got timeout\n”);
 goto end;
 }
 else if (status == ET_ERROR_EMPTY) {
 printf(“et_client: no events\n”);
 goto end;
 }
 else if (status == ET_ERROR_BUSY) {
 printf(“et_client: station is busy\n”);
 goto end;
 }
 else if (status == ET_ERROR_WAKEUP) {
 printf(“et_client: someone told me to wake up\n”);
 break;
 }
 else if (status != ET_OK) {
 printf(“et_client: get error\n”);
 goto error;
 }

 /* print data */
 if (0) {
 int pri, len, *data;
 for (j=0; j< numread; j++) {
 et_event_getdata(pe[j], (void **) &data);
 et_event_getpriority(pe[j], &pri);
 et_event_getlength(pe[j], &len);
 et_event_getcontrol(pe[j], con);
 printf(“et_client data = %d, pri = %d, len = %d\n”, *data, pri, len);
 for (i=0; i < ET_STATION_SELECT_INTS; i++) {
 printf(“ con[%d] = %d\n”, i, con[i]);

 }
 }
 }

 /* example of putting array of events */
 status = et_events_put(id, attach1, pe, numread);

–37 – Examples

 if (status == ET_ERROR_DEAD) {
 printf(“et_client: detach\n”);
 goto end;
 }
 else if (status != ET_OK) {
 printf(“et_client: put error\n”);
 goto error;
 }
 totalread += numread;

 end:
 /* print something out after having read NUMEVENTS events */
 if (totalread >= NUMEVENTS) {
 totalread = 0;
 printf(“ et_client: %d events\n”, NUMEVENTS);
 }
 /* if ET system is dead, wait here until it comes back */
 if (!et_alive(id)) {
 et_wait_for_alive(id);
 }
 } /* while(alive) */

 error:
 free(pe);
 printf(“et_client: ERROR\n”);
 exit(0);
}

Chapter 6 Modifying The ET System

For the reader that needs to tune the ET system for better or even
different performance, this is the chapter that needs to be read.

6.1 Versions

The header file “et_private.h”defines the macro ET_VERSION
whose value denotes the version of the ET software. When a user
calls et_open, the routine checks to see if its version and the version
of the ET system it is opening is the same. If not, an error is returned.
Thus, when a user makes fundamental changes to the ET software
and recompiles it, the value of ET_VERSION should also be changed
to some value over 1,000. GIving the version a large number allows
the author and distributors of ET to use the version number for
successive releases of the software without conflicting with the
version a user makes with specific modifications. In this way, incom-
patible version of ET will always give users a warning.
Modifying the definitions of constants defined in “et.h”, such as
ET_STATION_SELECT_INTS, ET_ATTACHMENTS_MAX,
ET_FILENAME_LENGTH, or ET_STATNAME_LENGTH, may
cause problems if the user is not careful. Difficulties may arise when
more than one ET library exist - each with different definitions of one
of the above constants. When network communications occur
between clients using one library and ET systems using another
library, it is likely that one of the processes involved will crash. Thus,
for these modifications, be sure to change ET_VERSION.

6.2 Event Selection

6.2.1 Selection Integers

For users that need additional control over the flow of their events,
take a look at the file “et.h”.It is possible to increase the value of the
macro ET_STATION_SELECT_INTS and recompile ET (provided of
course you have the source code). What this buys one is the simulta-
neously increase of both the number of select words (actually inte-
gers) for each station and also the corresponding number of control

–39 – Modifying The ET System

words (integers) of each event. Thus, one is not stuck trying to cram
as much matching or flow information into the default four integers
as possible.
Changing the value of ET_STATION_SELECT_INTS and recom-
piling can cause fatal errors if not done properly. If an ET system and
all its users are not using either the same shared library or one
compiled with an identical code, then network communications will
fail with unpredictable results. The way to avoid potential problems
of this type is to assign another version number to modified ET
systems (libraries) by changing the value of ET_VERSION in
“et_private.h” (see above).

6.2.2 Selection Functions

This modification suffices for only the simple need of more control
information. What if the user needs to change the manner in which a
station selects events altogether? The solution - mentioned in
sections 3.2 and 4.3 - is for the user to write a routine which does the
selection. An example is provided in the source code. Look in the /
.../et/src directory and at two files. The first, shown below, is
et_userfunction.c :

#include <et.h>

int et_users_function(et_sys_id id, et_stat_id stat_id, et_event *pe)
{
 int select[ET_STATION_SELECT_INTS],
 control[ET_STATION_SELECT_INTS];

 et_station_getselectwords(id, stat_id, select);
 et_event_getcontrol(pe, control);

 /* access event control ints thru control[N] */
 /* access station selection ints thru select[N] */

 /* return 0 if it is NOT selected, 1 if it is */

 if (some condition) {
 return 1;
 }
 return 0;
}

The first argument is the ET system id which gives the user access to
all system information. The second is the station the user is selecting
events for, and the last is a pointer to event that the user is wondering
whether to select or not. Simply return one (1) if the event is selected,
and zero (0) if it is not.

Modifying The ET System –40 –

Notice that the routines “et_station_getselectwords”and
“et_event_getcontrol”will prove extremely useful as they allow the
user access to all the selection and control integers. The name of this
function is completely up to the user. The only obvious restriction is
that it shouldn’t conflict with names in the ET library (look in et.h
and et_private.h). The name of the file is also up to the user provided
corresponding changes to the Makefile are made.
The second file of interest is the Makefile. There is one place where
et_userfunction.c is compiled into an object file and another where
the object file is compiled into a shared library. The name of the
shared library is again up to the user. Simply change the value of
“LIB_USER” in the Makefile.
The names of your function and shared library are parameters in the
definition of a station and are thus subject to a length limit. The func-
tion name is limited to ET_FUNCNAME_LENGTH - 1 chars and the
lib name is limited to ET_FILENAME_LENGTH - 1 chars. These
limits are enforced in the routines et_station_config_setfunction and
et_station_config_setlib.

6.3 Setting Heartbeat and Heartmonitor Periods

There are two time periods that are adjustable by modifying their
values in “et_private.h”and recompiling ET. The first of these two
periods is the time between heartbeats. As the reader should be
aware of by now, each process opening an ET system has a thread
start up which provides a heartbeat. By default it is set to 0.5 seconds:

#define ET_BEAT_SEC 0
#define ET_BEAT_NSEC 500000000

The second is time period between readings of the system heartbeat
if you are a user or client heartbeats if you are the system. Remember
that upon opening an ET system, another thread starts which moni-
tors the appropriate heartbeats. The default monitor period is 1.6
seconds:

#define ET_MON_SEC 1
#define ET_MON_NSEC 600000000

The CRUCIAL point to remember is that the heartbeat must be faster
than the heartmonitor. If the heartmonitor finds that the system
heartbeat has not changed in successive monitorings, then it declares
that the ET system is dead. The same is true for the system moni-
toring clients. If your process declares that the ET system is dead, no
further dealings with it are possible until the system heartbeat
returns.
Notice that the default has a large safety margin built in. The hearts
are beating more than three times faster than the monitors are
looking at them. This ensures that flakiness in unix’s handling of
timing, sleeping, and the scheduling of processes will not interfere.

–41 – Modifying The ET System

The advantage of decreasing the beat and monitor times is that the
system and user processes have a much quicker response to the
world. The disadvantage is that it slows down the performance of
the whole system. The author has run with a beat time of 0.3 seconds
and a monitor time of 1 second with no problems.
The reader should be aware that on Solaris systems the clock is
100Hz, meaning that when a thread or process encounters a “sleep”
or “nanosleep”command or is swapped out, it does nothing for a
minimum of 0.01 seconds. However, a Solaris workstation can be
setup to use a high resolution clock of 1000Hz which gives one a lot
better control over timing - talk to your system administrator. The
down side of speeding up the clock is increased overhead and
possibly slower performance.

6.4 Setting the Number of Attachments and Processes

In specifying the configuration of a system, which is passed on to the
routine “et_system_start”, the user can specify the maximum
number or attachments and the maximum number of processes
which can use the ET system being created. Both of these values are
limited however. They cannot exceed the values set by the macros
ET_ATTACHMENTS_MAX and ET_PROCESSES_MAX. The reason
for doing it that way is that programming is greatly simplified.
By looking in the file “et_private.h”, the reader can see that the
default value of ET_ATTACHMENTS_MAX is 50 and that the macro
ET_PROCESSES_MAX is set to ET_ATTACHMENTS_MAX. If more
attachments or processes are desired, then these 2 values can be
increased and ET must be recompiled. (Be sure to change
ET_VERSION as well).

6.5 Setting Defaults

Although a user can set ET system parameters such as the number of
events and their size, it may be nice if some of these parameters could
be made the default. This is possible by editing a few lines in the file
“et.h”.The value of a station’s cue and prescale along with the value
of a system’s number of events, max number of temporary events,
size of events, and max number of stations can be set to a user’s
preferred default by changing (respectively): ET_STATION_CUE,
ET _STA T ION_P R ES C AL E, ET _SYST EM_E VENT S,
ET _SYST EM_NT EMP S , E T_ST AT IO N_ESIZ E,
ET_SYSTEM_NSTATS. A recompilation is necessary.

Chapter 7 Remote ET

7.1 Remote Node Operation Overview

It is possible to have an ET system on one machine and its clients
(called remote clients) on another. Remote clients can call all the
routines that local clients can. Of course, the speed of transferring
events over the network is quite a bit slower than the speed of
accessing shared memory.
The way this is done is that each ET system has a server “builtin”as
it were. That is, there are two threads in the ET system’s process
which facilitate accessing that system from another computer. One of
these threads responds to the broadcasts of remote clients trying to
find an ET system of a particular name somewhere on the network.
The response is simply sending back the port number of the socket
that the other thread is listening on. This second thread, when
connected with a client, is the one which handles all the receiving
and sending of events and other information with the client.
It is this arrangement that makes it possible to run an ET system on
Linux. At this point, Linux does not allow the sharing of pthread
mutexes and condition variables between processes. This makes it
impossible to access the shared memory of the ET system safely
between processes. However, this problem can be circumvented by
treating local Linux clients as remote clients. The server built into the
ET system handles all ET routines that require handling these
mutexes and sends this client pointers to events which the client can
then access in shared memory. This makes running ET systems on
Linux slower than those running on Solaris. However, on the
author’s Linux dual 200MHz pentium pro machine, an ET system
which consists of a single producer and does no data copying can
handle events at 200kHz.

7.2 System Connection

In order to have things work seamlessly, the user needs to make
some decisions. First of all, the decision needs to be made whether
clients connect to ET systems using a direct connection by specifying
host and port, or possibly by using broadcasting or multicasting.

–43 – Remote ET

When a client does not know the host and port, either broadcasting
or multicasting is a must. Although multicasting is the way of the
future, some operating systems (eg. Solaris 2.6) do not yet fully
support it. To be more specific. ET systems that run on Solaris 2.6 and
earlier versions cannot use multicasting. However, remote clients
running on them can (as long as they use the default value for TTL).
For network applications that use the new IPv6 standard, multi-
casting must be used as broadcasting is not supported. On Linux
(Redhat 6.0) multicasting works as far as it’s been tested. Broad-
casting, on the other hand is supported by all operating systems.

7.2.1 Direct Connection

There are times when using either broadcasting or multicasting are
inconvenient or impossible. For example, if an ET system and a
client are on different subnets, broadcasting from one to the other is
stopped by any routers unless such are reprogrammed to allow
broadcasting to get through - a hassle in any case. And, as was
mentioned above, multicasting is not yet supported by all operating
systems. In situations such as these, a direct connection can be made.
When the ET system is started up, it’s configuration can be set by

using the “et_system_config_...”set of routines. A call to
“et_system_config_setserverport”sets the port number of the ET
system’s tcp server thread in that particular configuration. If the port
is unavailable when actually starting the ET system by a call to
“et_system_start”using that same configuration, the process will
exit with an error message. Thus, using this routine guarantees that
the ET system will have its server thread at that port. Note that if the
server port is NOT explicitly set in this way, then by default
ET_SERVER_PORT (defined as 11111 in “et.h”)is used as the port
number. If this port is busy, it’s incremented by one and tried again
and so on until there is success. If it has tried 2000 port numbers with
no success, the process exits with an error message.
Remote clients need to know the port number and the host name that
the ET system is on. Then using “et_open_config_setserverport”the
port can be set, using “et_open_config_sethost”the host can be set,
and using “et_open_config_setcast”a direct connection can be spec-
ified. It is irrelevant as to whether the ET system has been specified
as set for broadcasting or multicasting (the only two options for the
system).

7.2.2 Broadcasting

Broadcasting is done to IP addresses of two relevant types. An IP
address in dotted-decimal form (eg 128.7.6.21) can be represented as
{netid, subnetid, hostid}. The first type of broadcast address is
subnet-directed and is of the form {netid, subnetid,-1} where -1
simply means that that part of the address is composed of all 1’s in
binary. For example, if 128.7.6 is the subnet with a mask of

Remote ET –44 –

255.255.255.0, then 128.6.7.255 is the broadcast address to that
subnet. A broadcast will be received by all machines on that partic-
ular subnet.
The second type of broadcast address is all-subnets-directed and is
of the form {netid, -1, -1}. Again, if 128.7 is the netid, then the broad-
cast address is 128.7.255.255. This type of broadcast will be received
by all machines on all the subnets at that site. Keep in mind that some
older systems still send packets to 255.255.255.255 when broad-
casting. If this seems confusing, ask your system administrator to tell
you the broadcast address of your subnet or of all your subnets.
To set an ET system to respond to broadcasts and not multicasts, use
the “et_system_config_setcast”routine to set the configuration to a
setting of ET_BROADCAST. (A client can still connect directly to
this ET system regardless of this configuration parameter’s value).
The question then arises how the ET system’s subnet is specified. The
subnet that the ET system listens on for broadcasts can be set directly
by calling”et_system_config_setaddress”.However, if the user does
not know the local subnet address and does not set it, it will be found
automatically (see “et_mybroadcastaddr”in “et_network.c”for
details). Normally automatic finding of subnets is no problem, but
difficulties can arise when a host is on more that one subnet. If diffi-
culties do arise, explicitly setting the subnet address is the way out.
Configuring a client to use broadcasting and not multicasting is very
similar to setting up the ET system to do the same. Use the
“et_open_config_setcast”routine to set the configuration to a setting
of ET_BROADCAST. Call “et_open_config_setaddress”to set the
subnet address to broadcast on (one of the local subnets of the client).
A subnet address is found automatically if it is not set explicitly.
Keep in mind that if an ET system is set up to listen for broadcasts,
then clients need to be set up for broadcasting.

7.2.3 Multicasting

In multicasting a client sends out a packet to a special multicast IP
address. The listeners (ET systems) sign up to receive any packets
send to that address and only computers hosting such listeners will
receive the packets - not all machines on the subnet as is the case in
broadcasting. Multicasting has the ability to go beyond the local
subnet and thus is more flexible than broadcasting. The following
table lists all available multicast addresses as well as “TTL”values
reproduced from Unix Network Programming, Volume 1 by
Richard Stevens:

–45 – Remote ET

Although this author is NOT an expert ..., the use of TTL values and
ranges of addresses is meant to set the range or the scope of the
multicasts. The use of setting the TTL value for scoping is accepted
and even recommended practice with a default value of one
meaning the local subnet only. However, administrative scoping is
preferred when possible. The range 239.0.0.0 to 239.25.255.255 is the
administratively scoped IPv4 multicast space. “Addresses in this
range are assigned locally by an organization but are not guaranteed
to be unique across organizational boundaries. An organization
must configure its boundary routers (multicast routers at the
boundary of the organization) not to forward multicast packets
destined to any of these addresses”.
In short, pick an address between 239.0.0.0 and 239.25.255.255 for use
at one particular site. If this is confusing, talk to your system admin-
istrator and ask for a safe multicast address for your use.
According to Harold in Java Network Programming, the Internet
Assigned Numbers Authority (IANA) is responsible for handing out
permanent multicast addresses as needed and do so manually as
demand is still small. The following is a table, taken from the
mentioned book, showing some of the taken multicast addresses:

Table 1. Multicast Addresses

Scope IPv6
scope

IPv4

TTL
scope administrative scope

node-local 1 0

link-local 2 1 224.0.0.0 to 224.0.0.225

site-local 5 <32 239.255.0.0 to 239.255.255.255

org.-local 8 239.192.0.0 to 239.195.255.255

global 14 <255 224.0.1.0 to 238.255.255.255

Table 2. Multicast Addresses In Use

 Domain Name IP Address Purpose

BASE-ADDRESS.MCAST.NET 224.0.0.0 Reserved base address -
never assigned

ALL-SYSTEMS.MCAST.NET 224.0.0.1 All systems on the local
subnet

ALL-ROUTERS.MCAST.NET 224.0.0.2 All routers on the local
subnet

Remote ET –46 –

DVMRP.MCAST.NET 224.0.0.4 All Distance Vector Multi-
cast Routing Protocol rout-
ers on this subnet

MOBILE-AGENTS.MCAST.NET 224.0.0.11 Mobile-Agents on the local
subnet

DHCP-AGENTS.MCAST.NET 224.0.0.12 Allows client to locate
DHCP server on local sub-
net

PIM-ROUTERS.MCAST.NET 224.0.0.13 All Protocol Independent
Multicasting routers on this
subnet

RSVP-ENCAPSULA-
TION.MCAST.NET

224.0.0.14 RSVP-ENCAPSULA-
TION on this subnet

NTP.MCAST.NET 224.0.1.1 Network Time Protocol

SGI-DOG.MCAST.NET 224.0.1.2 Silicon Graphics Dogfight
game

NSS.MCAST.NET 224.0.1.6 Name Service Center

AUDIONEWS.MCAST.NET 224.0.1.7 Audio News multicast

SUB-NIS.MCAST.NET 224.0.1.8 Sun’s NIS+ Information
Service

MTP.MCAST.NET 224.0.1.9 Multicast Transport Proto-
col

224.0.1.10 -
224.0.1.19

Stuff

EXPERIMENT.MCAST.NET 224.0.1.20 Experiments that do NOT
go beyond the local subnet.

224.0.1.23 -
224.0.1.32

Stuff

224.0.6.000 -
224.0.6.127

ISIS project for robust soft-
ware development

224.0.9.000 -
224.0.9.255

Internet Railroad project -
45Mbit/sec backbone

Table 2. Multicast Addresses In Use

 Domain Name IP Address Purpose

–47 – Remote ET

To set an ET system to respond to mult icas ts , use the
“et_system_config_setcast”routine to set the configuration to a
setting of ET_MULTICAST. (A client can still connect directly to this
ET system regardless of this configuration parameter’s value). The
address that the ET system listens on for multicasts can be set by
calling “et_system_config_setaddress”.
Configuring a client to use multicasting and not broadcasting is very
similar to setting up the ET system to do the same. Use the
“et_open_config_setcast”routine to set the configuration to a setting
of ET_MULTICAST. Call “et_open_config_setaddress”to set the
address to multicast on. Keep in mind that if an ET system is set up
to listen for multicasts, then clients need to be set up for multicasting.

7.2.4 Port Selection for Broad/Multicasting

In addition to choosing either broadcasting or multicasting and
choosing the IP address, the user must also choose the port number
for these IP communications. The Internet Assigned Numbers
Authority (IANA) states that the range of port numbers from 0 to
1023 are controlled and assigned by the IANA. Thus, these are off
limits. The ports 1024 to 49151 are NOT controlled by the IANA and
are available for use, but the IANA registers and lists the uses of
these ports as a convenience to the internet community. For example,
ports 6000 to 6063 are assigned for an X window server for both TCP
and UDP. Generally, the higher numbered ports are less likely to be
used. Finally, ports 49152 to 65535 are called dynamic or private or
ephemeral ports. The IANA says nothing about these.
Use the routine “et_system_config_setport”to configure an ET
system to listen for broad/multicast on a particular port. Use
“et_open_config_setport”to configure a client to send broad/multi-
casts to a particular port. These must be the same value for things to
work. By default, if not set explicitly, they are both set to
ET_BROADCAST_PORT (defined as 11111 in “et.h”).

7.2.5 Defaults & Macros

When defining a configuration to use in opening an ET system, the
defaults are to use broadcasting (ET_BROADCAST) to port
ET_BROADCAST_PORT (defined as 11111 in “et.h”) on a subnet
address that is automatically found. If the automatic finding of the
subnet fails, a value of ET_BROADCAST_ADDR is used (defined
as "129.57.35.255" in “et.h”- the author’s personal subnet). The macro
ET_MULTICAST_PORT is also similarly defined to be 11111, while

224.2.0.0 -
224.2.255.255

MBONE

Table 2. Multicast Addresses In Use

 Domain Name IP Address Purpose

Remote ET –48 –

the macro ET_MULTICAST_ADDR is defined to be "239.200.0.0".
The value of ET_MULTICAST_TTL is one. All of these macros are
only defined for the users’ convenience.

7.2.6 Examples

When setting up an ET system, the following sequence of calls will
set things up for broadcasting:

et_sys_id id;
et_sysconfig config;

/* initialize configuration */
et_system_config_init(&config);
/* remote users use broadcast instead of multicast to
find me */
et_system_config_setcast(config, ET_BROADCAST);
/* remote users broadcast to this port */
et_system_config_setport(config, ET_BROADCAST_PORT);
/* listen to broadcasts on this subnet */
et_system_config_setaddress(config, "129.57.35.255");
/* start ET system */
et_system_start(&id, config);
/* release configuration’s allocated memory */
et_system_config_destroy(config);

When setting up an ET system that uses multicasting, try the
following:

et_sys_id id;
et_sysconfig config;

/* initialize configuration */
et_system_config_init(&config);
/* remote users’ use multicast to find me */
et_system_config_setcast(config, ET_MULTICAST);
/* remote users multicast to this port */
et_system_config_setport(config, ET_MULTICAST_PORT);
 /* listen to multicasts to this address */
et_system_config_setaddress(config, ET_MULTICAST_ADDR);
/* start ET system */
et_system_start(&id, config);
/* release configuration’s allocated memory */
et_system_config_destroy(config);

When setting up an ET system with the server on a specific port, try
the following:

et_sys_id id;

–49 – Remote ET

et_sysconfig config;

/* initialize configuration */
et_system_config_init(&config);
/* remote users use broadcast instead of multicast to find me */
et_system_config_setcast(config, ET_BROADCAST);
/* remote users broadcast to this port */
et_system_config_setport(config, ET_BROADCAST_PORT);
/* set port of tcp server thread */
et_system_config_setserverport(config, 11222);
/* listen to broadcasts on this subnet */
et_system_config_setaddress(config, "129.57.35.255");
/* start ET system */
et_system_start(&id, config);
/* release configuration’s allocated memory */
et_system_config_destroy(config);

When setting up a client to open an ET system on an unknown host
(may be local or remote), and it’s trying to find a system that’s
using broadcasting on port ET_BROADCAST_PORT at subnet
address 129.57.35.255, then include the following code:

et_sys_id id;
et_openconfig config;

/* initialize configuration */
et_open_config_init(&config);
/* ET is on an unknown host that may be anywhere */
et_open_config_sethost(config, ET_HOST_ANYWHERE);
/* use broadcast instead of multicast to find ET system */
et_open_config_setcast(config, ET_BROADCAST);
/* remote users broadcast to this port */
et_open_config_setport(config, ET_BROADCAST_PORT);
/* on this subnet address */
et_open_config_setaddress(config, "129.57.35.255");
/* open the ET system */
et_open(&id, "et_name", config);
/* release configuration’s allocated memory */
et_open_config_destroy(config);

When setting up a client that knows the name of the remote host
(ethost.mylab.org) running the ET system, and it’s trying to find an
ET s ys tem t hat ’ s us i ng m ul t i c as t i ng on po r t
ET_MULTICAST_PORT at address ET_MULTICAST_ADDR,
then include the following code:

et_sys_id id;
et_openconfig config;

/* initialize configuration */

Remote ET –50 –

et_open_config_init(&config);
/* ET is running on ethost */
et_open_config_sethost(config, "ethost.mylab.org");
/* use multicast to find ET system */
et_open_config_setcast(config, ET_MULTICAST);
/* remote users multicast to this port */
et_open_config_setport(config, ET_MULTICAST_PORT);
/* remote users multicast to this address */
et_open_config_setaddress(config, ET_MULTICAST_ADDR);
/* open the ET system */
et_open(&id, "et_name", config);
/* release configuration’s allocated memory */
et_open_config_destroy(config);

When setting up a client to open an ET system on an known host
(129.182.54.67), and it’s trying to directly connect to it on server port
12345, then include the following code:

et_sys_id id;
et_openconfig config;

/* initialize configuration */
et_open_config_init(&config);
/* ET is on an unknown host that may be anywhere */
et_open_config_sethost(config, "129.182.54.67");
/* use a direct connection to the ET system */
et_open_config_setcast(config, ET_DIRECT);
/* ET system’s server is on this port */
et_open_config_setserverport(config, 12345);
/* open the ET system */
et_open(&id, "et_name", config);
/* release configuration’s allocated memory */
et_open_config_destroy(config);

7.3 Remote Programming Details

7.3.1 Errors

As mentioned previously, ET_ERROR_NOREMOTE is the error
returned when calling a routine which is not supported for remote
use. Currently, however, there are no routines which return this
error. Some remote user errors are given by ET_ERROR_REMOTE
- those errors which are unique to a remote user and do not occur
locally. In practice, this error is returned when memory cannot be
allocated by the remote user. If there are errors in reading or writing
over the network, the errors generated will be ET_ERROR_READ or
ET_ERROR_WRITE.

–51 – Remote ET

7.3.2 Remote Behavior on a Local Host

It is possible to tell clients to run the code that a remote client runs
even if it is running on the same computer as the ET system. In this
case, all communication with the ET system is done through sockets
with no usage of the shared memory. This is done by calling
“et_open_config_setmode”with the ET_HOST_AS_REMOTE
option. The default mode is ET_HOST_AS_LOCAL.

7.3.3 Modifying Events

After opening an ET system, creating a station, and attaching to it,
users are ready to start reading events. There are a few details to
keep in mind when doing so remotely.
Remote users can gain quite a bit of efficiency by minimizing
communication with the ET system. The minimizing of communica-
tion is done transparently and is the default mode of operation. That
is, when a remote user calls “et_event(s)_get”,the ET system copies
the events and sends them over the network to the user but also
immediately puts them back into the ET system with a call to
“et_event(s)_put”. There may be times, however, when a user first
wishes to modify the events and then send them back over the
network to the ET system and which then puts them back in. To aid
in this effort an extra flag is introduced, ET_MODIFY. By ORing this
flag to ET_SLEEP, ET_TIMED, or ET_ASYNC, the user announces an
intention to modify the requested event. Thus, when the ET server
initially gets the event for the remote user, it does NOT put it back
into the ET system immediately afterwards. It waits until the user
has called “et_event(s)_put”before doing that. Without this flag, the
server puts the events back into the ET system immediately.
There may be occasions when the remote user doesn’t want to
modify the data but only the header information such as the priority,
control works, and such. In that case it makes no sense to send all the
data back to the ET system when putting the event back. By using the
flag ET_MODIFY_HEADER instead of ET_MODIFY, only the
header information will be sent back - speeding up communication
greatly.

7.3.4 Creating New Events

Whe n p rodu c i ng e ve nts re mo te ly , the u se r ’ s ca l l to
“et_event(s)_new”causes the server to send a bunch of pointers to
these new events to the remote user. I know this does not appear to
make any sense; however, it does cause remote and local programs
to behave in the same manner. What happens on the receiving end is
the user simply allocates memory locally to store the event(s). When
the user calls “et_event(s)_put”,the events are sent over the network
to the server while the locally allocated memory is freed.

Remote ET –52 –

7.3.5 Multi-Threading

If the user’s remote client is a multi-threaded program, some caution
needs to be used. A problem may arise if one thread calls “et_open”
returning an ET system id which is then used by other threads. If
more than one thread call routines which simultaneously communi-
cate to the server on the same socket, then the server will become
confused. To avoid this problem, each thread that wants access to an
ET system needs to do its own “et_open”and thus communicate on

7.4 Swapping Data

Transferring data between machines where one is big endian (the
most significant byte is placed in the lowest memory address) and
the other is little endian (the least significant byte is placed in the
lowest memory address), requires the data to be “swapped”.Since in
general a user may not be knowledgeable about the machine on
which a particular event was originally produced, a simple call to the
function “et_event_needtoswap(et_event *pe, int *swap)”will
reveal whether the data needs to be swapped or not. If the return
value placed in swap is ET_NOSWAP, no swapping is necessary;
however, if the return value is ET_SWAP, then the opposite is true.
The ET system automatically keeps track of the endianness of an
event’s data. However, the user may want to forcibly set the data’s
e ndi anne s s f or s ome r e as on . In tha t cas e , a c a l l to
“et_event_setendian(et_event *pe, int endian)”can be made. The
endianness can be set to ET_ENDIAN_BIG, ET_ENDIAN_LITTLE,
ET _END IA N_LO CA L (s am e e ndi an as loc a l hos t) ,
ET_ENDIAN_NOTLOCAL (opposite endian as local host), or
ET_ENDIAN_SWITCH (switch the endian from whatever it is). This
routine does NOT swap the data but simply keeps track of the data’s
endianness in the event’s header. A user may also read the endian-
ness of an event’s data by a call to “et_event_getendian(et_event
*pe, int *endian)”. It returns either ET_ENDIAN_BIG or
ET_ENDIAN_LITTLE.
The routine “et_event_CODAswap(et_event *pe)”is provided for
those who need to swap data in CODA format. The data is manipu-
lated in the existing event’s data buffer so that the function irrevers-
ibly mangles the data.
Users of data formats other than CODA must provide their own
swapping routines.
Another routine of interest is “et_system_getlocality(et_sys_id id,
int *locality)”. This returns the value ET_REMOTE in the variable
“locality”if the ET system is remote, ET_LOCAL if it is local, and
ET_LOCAL_NOSHARE if it is local but is on a machine which does
not allow sharing of pthread mutexes across processes (e.g. Linux).

–53 – Remote ET

7.5 Transferring Events Between 2 ET Systems

While it is certainly possible for a user to copy events from one ET
system and place them in another with "normal" ET function calls,
the ET system provides a more efficient way to do this. By using ET’s
bridging software, unnecessary coping of the data may be elimi-
nated from the procedure. Regardless of whether the ET systems are
on the same or different computers or if the process running the
bridging routine is on one or the other or on yet a third machine, the
transfer should take place smoothly. It will save time except perhaps
when both ET systems and the bridging process are on the same
machine in which case only a single copy of the data is made - no
different than when using the "normal" ET function calls. A call to
the following function will take care of all the details:

et_events_bridge(et_sys_id id_from, et_sys_id id_to, et_att_id
att_from, et_att_id att_to, et_bridgeconfig bconfig, int num, int
*ntransferred).
The arguments are respectively: the ID of the ET system from which
the events are copied, the ID of the ET system to which the events are
going, the attachment to a station on the "from" ET system, the
attachment to a station on the "to" ET system (usually an attachment
to GrandCentral), a configuration argument, the total number of
events desired to be transferred, and the total number of events that
were actually transferred at the routine’s return. The configuration
argument may be NULL in which case defaults are used.
The configuration for bridging events is very similar to the configu-
ration for opening a system or creating a system. There are a number
of functions used to create and define the config argument. It is
initialized by a call to et_bridge_config_init (et_bridgeconfig
*config). When the user is finished using the configuration,
et_bridge_config_destroy (et_bridgeconfig config) must be called in
order to properly release all memory used.
After initialization, calls can be made to functions which set various
properties of the specific configuration. Calls to these setting func-
tions will fail unless the configuration is first initialized. The func-
tions used to SET these properties are listed below along with an
explanation for each:

1. et_bridge_config_setmodefrom(et_bridgeconfig config, int
val) : setting val to ET_SLEEP, ET_TIMED, or ET_ASYNC
determines the mode of getting events from the "from" ET
system. The default is ET_SLEEP.

2. et_bridge_config_setmodeto(et_bridgeconfig config, int
val) : setting val to ET_SLEEP, ET_TIMED, or ET_ASYNC
determines the mode of getting new events from the "to" ET
system. The default is ET_SLEEP.

Remote ET –54 –

3. et_bridge_config_setchunkfrom(et_bridgeconfig config,
int val) : setting val sets the maximum number of events to
get from the "from" ET system in a single call to
et_events_get - the chunk size if you will. The default is 100.

4. et_bridge_config_setchunkto(et_bridgeconfig config, int
val) : setting val sets the maximum number of new events to
get from the "to" ET system in a single call to et_events_new
- the chunk size if you will. The default is 100.

5. et_bridge_config_settimeoutfrom(et_bridgeconfig config,
struct timespec val) : setting val sets the time to wait for the
"from" ET system when the mode is set to ET_TIMED. The
default is 0 sec.

6. et_bridge_config_settimeoutto(et_bridgeconfig config,
struct timespec val) : setting val sets the time to wait for the
"to" ET system when the mode is set to ET_TIMED. The
default is 0 sec.

7. et_bridge_config_setfunc(et_bridgeconfig config,
ET_SWAP_FUNCPTR func) : setting func to a function
pointer (function name) means that the function will be
called to swap data whenever it’s determined to be neces-
sary. Using this feature is a convenient way of swapping
data while it’s being moved from one ET system to another
with no intervention from the user needed. The function
must be of the form: int func(et_event *src, et_event *dest,
int bytes, int same_endian) . It returns ET_OK if successful
otherwise ET_ERROR. The arguments consists of: src which
is a pointer to the event whose data is to be swapped, dest
which is a pointer to the event where the swapped data
goes, bytes which tells the length of the data in bytes, and
same_endian which is a flag equalling one if the machine
and the data are of the same endian and zero otherwise. This
function must be able to work with src and dest being the
same event. With this as a prototype, the user can write a
routine which swaps data in the appropriate manner.
Notice that the first two arguments are pointers to events
and not data buffers. This allows the writer of such a routine
to have access to any of the event’s header information. In
general, such functions should NOT call et_event_setendian
in order to change the registered endian value of the data.
This is already taken care of in et_events_bridge. The
default is NULL which means no swapping is done.

8. et_bridge_CODAswap(et_event *src, et_event *dest, int
bytes, int same_endian) : this is a function that can be used
in et_bridge_config_setfunc if the user wants to swap
CODA format data.

There are corresponding “et_bridge_config_get...”functions to get
the configuration values of everything except the swapping func-
tion.

Chapter 8 Useful Macros

8.1 Event Priority

1. ET_LOW - low event priority
2. ET_HIGH - high event priority

8.2 Event Data Status

3. ET_DATA_OK - event data is OK
4. ET_DATA_CORRUPT - event data is corrupt
5. ET_DATA_POSSIBLY_CORRUPT - event data may be

corrupt

8.3 String Lengths

6. ET_FILENAME_LENGTH - maximum length of ET sys-
tem file name + 1

7. ET_FUNCNAME_LENGTH - maximum length of user’s
event selection function name

8. ET_STATNAME_LENGTH - maximum length of station
name

8.4 Waiting Modes for Events

9. ET_ASYNC - event get routines’ async wait mode
10. ET_SLEEP - event get routines’ sleep wait mode
11. ET_TIMED - event get routines’ timed wait mode
12. ET_MODIFY - remote event will be modified and put

back. This flag gets ORed with one of ET_SLEEP,
ET_TIMED, or ET_ASYNC.

13. ET_MODIFY_HEADER - remote event will have its
header information modified and put back. This flag gets
ORed with one of ET_SLEEP, ET_TIMED, or ET_ASYNC.

Useful Macros –56 –

8.5 Station Related

8.5.1 General

14. ET_GRANDCENTRAL - station id for grandcentral
15. ET_STATION_SELECT_INTS - number of event selection

integers associated with each station

8.5.2 Station Status

16. ET_STATION_UNUSED - station status when unused
17. ET_STATION_CREATING - station status when it is

being created
18. ET_STATION_IDLE - station status when it has been cre-

ated but has no processes attached to it
19. ET_STATION_ACTIVE - station status when it is active

8.5.3 Number of Users per Station

20. ET_STATION_USER_MULTI - mode allowing many
users to attach to a particular station

21. ET_STATION_USER_SINGLE - mode allowing one user
only to attach to a particular station

8.5.4 Station Blocking Modes

22. ET_STATION_NONBLOCKING - mode which does not
block the flow of events through the ET system at a particu-
lar station

23. ET_STATION_BLOCKING - mode which blocks the flow
of events through the ET system so all must pass through a
particular station

8.5.5 Event Selection Modes

24. ET_STATION_SELECT_ALL - station mode in which all
events selected

25. ET_STATION_SELECT_MATCH - station mode in which
events whose control integer array match the station’s selec-
tion integer array in a predefined manner, are selected (see
next chapter for details)

26. ET_STATION_SELECT_USER - station mode in which
events that meet user-defined criteria are selected (see next
chapter for details)

–57 – Useful Macros

8.5.6 Event Restore Modes

27. ET_STATION_RESTORE_OUT - mode which restores
events in a dead user process back to the ET system by plac-
ing them in the station’s output list

28. ET_STATION_RESTORE_IN - mode which restores
events in a dead user process back to the ET system by plac-
ing them in the station’s input list

29. ET_STATION_RESTORE_GC - mode which restores
events in a dead user process back to the ET system by plac-
ing them in grandcentral station’s input list

8.5.7 Default Values

30. ET_STATION_CUE - default number of events to cue in a
nonblocking station (10)

31. ET_STATION_PRESCALE - default prescale value for
blocking stations (1) gets every event

8.6 System Related

32. ET_SYSTEM_EVENTS - default number of events in a sys-
tem (300)

33. ET_SYSTEM_NTEMPS - default maximum number of
temporary events in a system (300)

34. ET_SYSTEM_ESIZE - default size of normal events in bytes
(1000)

35. ET_SYSTEM_NSTATS - default naximum number of sta-
tions in a system (10)

8.7 Errors

36. ET_OK - error status of ok
37. ET_ERROR - error status of error
38. ET_ERROR_TOOMANY - error status of too many

already
39. ET_ERROR_EXISTS - error status of exists already
40. ET_ERROR_WAKEUP - error status indicating a user call

of et_wakeup_attachments or et_wakeup_all was made in
order to wakeup an attachment trying to get events.

41. ET_ERROR_TIMEOUT - error status of timeout
42. ET_ERROR_EMPTY - error status of no events in station

input list
43. ET_ERROR_BUSY - error status of another process cur-

rently accessing a station’s input or output list.

Useful Macros –58 –

44. ET_ERROR_DEAD - error status indicating ET system is
dead.

45. ET_ERROR_READ - error reading from socket in remote
client.

46. ET_ERROR_WRITE - error writing to socket in remote cli-
ent.

47. ET_ERROR_REMOTE - error in remote client. Used to dif-
ferentiate between an error generated locally in the remote
client from an error (ET_ERROR) generated and returned by
the ET server or a valid value returned from a routine.

48. ET_ERROR_NOREMOTE - error indicating that the rou-
tine is not supported on a remote client.

8.8 Debug Output Levels

49. ET_DEBUG_NONE - no debug output
50. ET_DEBUG_SEVERE - severe errors only debug output
51. ET_DEBUG_ERROR - all errors debug output
52. ET_DEBUG_WARN - all errors and warnings debug out-

put
53. ET_DEBUG_INFO - all errors, warnings, and informational

debug ouput

8.9 Remote Client Related

54. ET_SWAP - swapping of data is necessary since client and
server are on different endian machines

55. ET_NOSWAP - no swapping of data is necessary since cli-
ent and server are on the same endian machines

56. ET_BROADCAST - discover ET system by broadcasting
57. ET_MULTICAST - discover ET system by multicasting
58. ET_DIRECT - connect directly (no broad/multicast) to ET

system by specifying ET server port number and host
59. ET_BROADCAST_PORT - port number for broadcasting

(default = 11111)
60. ET_MULTICAST_PORT - port number for multicasting

(default = 11111)
61. ET_SERVER_PORT - port number of the ET system for

communicating with remote users (default = 11111)
62. ET_BROADCAST_ADDR - broadcasting IP address

(default = daq group subnet = "129.57.35.255")
63. ET_MULTICAST_ADDR - multicasting IP address

(default = “239.200.0.0”)

–59 – Useful Macros

64. ET_MULTICAST_TTL - multicast TTL value (default = 1)
65. ET_HOST_LOCAL - ET system’s host is local
66. ET_HOST_REMOTE - ET system’s host is remote
67. ET_HOST_ANYWHERE - ET system’s host may be local

or remote
68. ET_HOST_AS_LOCAL - ET client is treated as local if it is

local
69. ET_HOST_AS_REMOTE - ET client is treated as remote

even if it is local

Appendix A User Routines

A.1 General Functions

A.1.1 int et_open

Purpose:
Given an ET system on the same host, this routine will map the
system’s shared memory into the user’s space. It also starts up a
thread to produce a heartbeat and a second thread to monitor the ET
system’s heartbeat. If the ET system is remote, a network connection
is made to it.
Arguments:
(et_sys_id *id, char *filename, et_openconfig config)

1. id is a pointer that gets filled in with the unique id of the ET
system being opened. It can be thought of as a pointer to a
handle.

2. filename is the unique filename of the ET system
3. config is the desired configuration of the way the ET system

is opened and is defined by routines starting with
“et_open_config_ ...” .

Returns:
1. ET_OK if successful
2. ET_ERROR if failure to open the ET file
3. ET_ERROR_TIMEOUT if the ET system is still not active

before the routine returns.
4. ET_ERROR_REMOTE for a remote user if it cannot get the

ET system’s port number, the host has a strange byteorder,
the tcp connection fails, or there’s not enough memory.

5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

–61 – Useful Macros

Notes:
The ET system is implemented as a single memory mapped file of the
name filename. This routine should only be called once, before all
other ET routines are used, or after a system has been closed with a
call to et_close or et_forcedclose. A successful return from this routine
assures connection to an ET system which is up and running. IT IS
CRUCIAL THAT THE USER GET A RETURN VALUE OF “ET_OK”
IF THE USER WANTS AN ET SYSTEM GUARANTEED TO FUNC-
TION.
The user may open an ET system on a remote host. ET decides
whether the user is on the same as or a different machine than the
system. If the determination is made that the user is on another
computer, then network connections are made to that system.

Useful Macros –62 –

A.1.2 int et_close

Purpose:
Given a local ET system that has been opened with a call to et_open,
this routine will stop all ET-related threads and unmap the system’s
memory from the user’s space making it inaccessible. It also frees
memory allocated in et_open to create the system’s id. For a remote
user, all this routine does is close the connection between the user
and ET system as well as free the memory allocated in creating the
system’s id.
Arguments:
(et_sys_id id)

1. id is the id of the ET system being closed.
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a local user on Linux (or other

non-mutex-sharing system) if cannot ummap shared mem-
oryr

Notes:
This routine should only be called once for a particular ET system
after the associated call to et_open. In addition, all attachments of the
process calling this routine must be detached first or an error will be
returned.

–63 – Useful Macros

A.1.3 int et_forcedclose

Purpose:
Given a local ET system that has been opened with a call to et_open,
this routine will stop all ET-related threads and unmap the system’s
memory from the user’s space making it inaccessible. For a remote
user, this routine closes the connection between the user and ET
system. But before it does any of this, it detaches all attachments
belonging to the process calling it. It also frees memory allocated in
et_open to create the system’s id.
Arguments:
(et_sys_id id)

1. id is the id of the ET system being closed.
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD for a local user if ET system is dead
4. ET_ERROR_REMOTE for a local user on Linux (or other

non-mutex-sharing system) if cannot ummap shared mem-
oryr

Notes:
This routine should only be called once for a particular ET system
after the associated call to et_open.

Useful Macros –64 –

A.1.4 int et_alive

Purpose:
This routine tells the user whether the ET system is dead or alive.
Arguments:
(et_sys_id id)

1. id is the id of the ET system of interest
Returns:

1. 1 if ET system given by id is alive
2. 0 if ET system given by id is dead
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

Notes:
This routine behaves differently depending on whether it is run
locally on Solaris, locally on Linux, or remotely. If the user is running
it locally on Solaris, a thread of the user’s process is constantly
checking to see if the ET system is alive and provides a valid return
value to et_alive when last it was monitored (up to three heartbeats
ago). If the user is on a remote node, the ET system’s server thread is
contacted. If that communication succeeds, then the ET system is
alive by definition, otherwise it is dead. If the user is local on Linux,
a hybrid approach is used. First the ET system’s server thread is
contacted. If that fails, the actual heartbeat in the shared memory is
monitored (taking 1.5 times the heartbeat time).

–65 – Useful Macros

A.1.5 int et_wait_for_alive

Purpose:
This routine waits until the ET system has a heartbeat before it
returns. It checks once every minimum sleep period.
Arguments:
(et_sys_id id)

1. id is the id of the ET system of interest
Returns:

1. ET_OK
2. ET_ERROR_READ for a remote user’s network read error
3. ET_ERROR_WRITE for a remote user’s network write error

Notes:
This routine behaves differently depending on whether it is run
locally or remotely. If the user is running it locally, it constantly
checks to see if the ET system is alive and waits before returning until
it is. If the user is on a remote node, the ET system’s server thread is
contacted. If that communication succeeds, then the ET system is
alive by definition, otherwise it immediately returns an error.

Useful Macros –66 –

A.2 Open Configuration Functions

A.2.1 int et_open_config_init

Purpose:
This routine initializes a configuration used by a process to open an
ET system. This MUST be done prior to setting any configuration
parameters or all setting routines will return an error.
Arguments:
(et_openconfig* sconfig)

1. sconfig is pointer to an open configuration variable
Returns:

1. ET_OK if successful
2. ET_ERROR if it fails to allocate memory for configuration

data storage

A.2.2 int et_open_config_destroy

Purpose:
This routine frees the memory allocated when a configuration is
initialized by “et_open_config_init”.
Arguments:
(et_openconfig sconfig)

1. sconfig is an open configuration
Returns:

1. ET_OK

–67 – Useful Macros

A.2.3 int et_open_config_setwait

Purpose:
This routine sets the means to wait for a valid ET system to be
detected.
Arguments:
(et_openconfig sconfig, int val)

1. sconfig is an open configuration
2. val is the method to wait for a valid ET system to be

detected. Setting “val”to ET_OPEN_WAIT makes
“et_open”block by waiting until the given ET system is
fully functioning or a set time period has passed before
returning. Setting val to ET_OPEN_NOWAIT makes
“et_open”return immediately after determining whether
th e ET sy s t em is a l ive or n ot . T he de f au l t i s
ET_OPEN_NOWAIT.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

ET_OPEN_WAIT or ET_OPEN_NOWAIT
Notes:
I f the ET system is local , both ET_OPEN_NOWAIT and
ET_OPEN_WAIT mean “et_open”will send a UDP broad/multicast
packet to see if the system responds. If not, it tries to detect a heart-
beat which necessitates waiting at least one heartbeat. With a remote
system, broad/multicasting to find it may take up to several
seconds. Usually, if the system is up and running, this will take a
fraction of a second. If a direct remote connection is being made, it is
tried once in the ET_OPEN_NOWAIT mode, but is tried repeatedly
at 10 Hz until the set timeout in the ET_OPEN_WAIT mode.

A.2.4 int et_open_config_getwait

Purpose:
This routine gets the means to wait for a valid ET system to be
detected.
Arguments:
(et_openconfig sconfig, int *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with ET_OPEN_WAITor

ET_OPEN_NOWAIT
Returns:

1. ET_OK

Useful Macros –68 –

A.2.5 int et_open_config_settimeout

Purpose:
This routine sets the maximum time to wait for a valid ET system to
be detected.
Arguments:
(et_openconfig sconfig, struct timespec val)

1. sconfig is an open configuration
2. val is maximum amount of time to wait for an alive ET sys-

tem to be detected if the wait mode is ET_OPEN_WAIT. If
the time is set to zero (the default), an infinite time is indi-
cated. Note that in local systems, “et_open”waits in integral
units of the system’s heartbeat time (ET_BEAT_SEC &
ET_BEAT_NSEC set in et_private.h). If broad/multicasting
to find a remote ET system, it is possible to take up to several
seconds to determine whether the system is alive or not. In
this case, the time limit may be exceeded.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized

A.2.6 int et_open_config_gettimeout

Purpose:
This routine gets the maximum time to wait for a valid ET system to
be detected.
Arguments:
(et_openconfig sconfig, struct timespec *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with the time

Returns:
1. ET_OK

–69 – Useful Macros

A.2.7 int et_open_config_sethost

Purpose:
This routine sets host or computer on which the ET system is
running.
Arguments:
(et_openconfig sconfig, char *val)

1. sconfig is an open configuration
2. val is the name of the computer (or host) on which the ET

system resides. For opening a local system only, set val to
ET_HOST_LOCAL (the default) or “localhost”(including
quotes). For opening a system on an unknown remote com-
puter only, set it to ET_HOST_REMOTE. For an unknown
ho s t w hic h m ay be l oc a l or r e m ote , s e t i t to
ET_HOST_ANYWHERE. Otherwise set val to the name or
dotted-decimal IP address of the desired host. If the
ET_DIRECT option is taken in et_open_config_setcast, be
aware that this routine must use the ET system’s actual host
name or “localhost”but must NOT be ET_HOST_LOCAL,
ET_HOST_REMOTE, or ET_HOST_ANYWHERE.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is NULL

or too long

A.2.8 int et_open_config_gethost

Purpose:
This routine gets the host or computer on which the ET system is
running.
Arguments:
(et_openconfig sconfig, char *val)

1. sconfig is an open configuration
2. val is a character array that gets filled with the host name

Returns:
1. ET_OK

Useful Macros –70 –

A.2.9 int et_open_config_setmode

Purpose:
This routine sets whether the ET system being opened treats the user
running this routine as local (if it is local) or remote even if it is local..
Arguments:
(et_openconfig sconfig, int val)

1. sconfig is an open configuration
2. val can be set to ET_HOST_AS_REMOTE if the local user is

to be treated as remote. This means all communication is
done through the ET server using sockets. The alternative is
to set val to ET_HOST_AS_LOCAL (default) which means
local users are treated as local with the ET system memory
being mapped into the user’s space.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

ET_HOST_AS_REMOTE or ET_HOST_AS_LOCAL

A.2.10 int et_open_config_getmode

Purpose:
This routine gets the mode which tells whether local users are treated
as local or remote.
Arguments:
(et_openconfig sconfig, int *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with either

ET_HOST_AS_REMOTE or ET_HOST_AS_LOCAL
Returns:

1. ET_OK

–71 – Useful Macros

A.2.11 int et_open_config_setdebugdefault

Purpose:
This routine sets the default level of debugging output.
Arguments:
(et_openconfig sconfig, int val)

1. sconfig is an open configuration
2. val can be set to ET_DEBUG_NONE which means no out-

put, ET_DEBUG_SEVERE for output describing severe
errors, ET_DEBUG_ERROR for output describing all errors,
ET_DEBUG_WARN for output describing warnings and
errors, and ET_DEBUG_INFO for output describing all
information, warnings, and errors.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not one

of the listed values

A.2.12 int et_open_config_getdebugdefault

Purpose:
This routine gets the default level of debugging output.
Arguments:
(et_openconfig sconfig, int *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with either

ET _D EBU G_NO NE, ET _D EBU G_S E VER E,
ET _D EBU G_ER R OR, ET _DE BUG _WA RN, or
ET_DEBUG_INFO

Returns:
1. ET_OK

Useful Macros –72 –

A.2.13 int et_open_config_setcast

Purpose:
This routine sets the method for a remote user to discover the ET
system to be opened.
Arguments:
(et_openconfig sconfig, int val)

1. sconfig is an open configuration
2. val is the name of the method for a remote user to discover

the ET system to be opened. Set it to ET_BROADCAST for
using UDP broadcasting (the default), ET_MULTICAST for
using UDP multicasting, or ET_DIRECT for a direct connec-
tion to the ET system by specifying host and port..

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

equal to ET_BROADCAST, ET_MULTICAST, or
ET_DIRECT

Notes:
To avoid broad/multicasting to find the ET system (actually the port
of the tcp server thread), use the ET_DIRECT option. This does not
broad/multicast and connects directly to the ET system. One reason
for wanting to avoid this is if the system and user are on different
subnets and routers will not pass the UDP packets between them. If
using ET_DIRECT, “et_open_config_sethost”must use the ET
s ys te m’ s ac tu a l h os t n ame or “loc a l hos t” o nly . Us e
“et_open_config_setserverport”to specify the port number of the ET
server thread.

A.2.14 int et_open_config_getcast

Purpose:
This routine gets the method for a remote user to discover the ET
system to be opened.
Arguments:
(et_openconfig sconfig, int *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with either ET_BROADCAST

or ET_MULTICAST
Returns:

1. ET_OK

–73 – Useful Macros

A.2.15 int et_open_config_setaddress

Purpose:
This routine sets the IP subnet address used for broadcasting or the
address for multicasting in discovering the ET system to be opened.
Arguments:
(et_openconfig sconfig, char *val)

1. sconfig is an open configuration
2. val is the IP address for broadcast or multicast communica-

tions in dotted-decimal form. If this routine is never called,
the address is automatically set to the local subnet broadcast
address. However, if finding the subnet broadcast address
fails, then the address is set to ET_BROADCAST_ADDR
(defined in “et.h”to be the author’s subnet broadcast
address). If multicasting is used, the address must be explic-
itly set by this routine.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is NULL

or too long or too short

A.2.16 int et_open_config_getaddress

Purpose:
This routine gets the IP subnet address used for broadcasting or the
address for multicasting in discovering the ET system to be opened.
Arguments:
(et_openconfig sconfig, char *val)

1. sconfig is an open configuration
2. val is a character array that gets filled with the address

Returns:
1. ET_OK

Useful Macros –74 –

A.2.17 int et_open_config_setport

Purpose:
This routine sets the port number for the IP broadcasting or multi-
casting used to discover the ET system being opened.
Arguments:
(et_openconfig sconfig, unsigned short val)

1. sconfig is an open configuration
2. val is the port number of the broadcast or multicast commu-

nications. The default is ET_BROADCAST_PORT, defined
in “et .h” as 11111 . I t m ay a ls o b e s e t to
ET_MULTICAST_PORT or to any port number desired by
the user.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is less than

1024

A.2.18 int et_open_config_getport

Purpose:
This routine gets the port number for the IP broadcasting or multi-
casting used to discover the ET system being opened.
Arguments:
(et_openconfig sconfig, unsigned short *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with the port number

Returns:
1. ET_OK

–75 – Useful Macros

A.2.19 int et_open_config_setserverport

Purpose:
This routine sets the port number for opening an ET system directly
without broadcasting or multicasting. It is used in conjunction with
setting the value in et_open_config_setcast to be ET_DIRECT.
Arguments:
(et_openconfig sconfig, unsigned short val)

1. sconfig is an open configuration
2. val is the port number of the ET system’s tcp server thread.

The default value is ET_SERVER_PORT which is set to
11111 in et.h.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is less than

1024
Notes:
To avoid broadcasting or multicasting to find the ET system (actually
the port number of the tcp server thread), use et_open_config_setcast
set to the ET_DIRECT option. This does no broad/multicast and
connects directly to the ET system. A possible reason for wanting to
avoid this is if the ET system and user are on different subnets and
routers will not pass the UDP packets between them. Setting the
server port value with this routine assumes that its value is known.
On e w ay t o e n su re th i s , i s to us e the rout ine
“et_system_config_setserverport”in the program which is starting
up the ET system (e.g. et_start.c). This will definitively set the port
number to the requested value or exit the program if it cannot. In this
way, the port can be set by the ET system and the information shared
with the user for use in this routine.

A.2.20 int et_open_config_getserverport

Purpose:
This routine gets the port number for opening an ET system directly
without broadcasting or multicasting.
Arguments:
(et_openconfig sconfig, unsigned short *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with the port number

Returns:
1. ET_OK

Useful Macros –76 –

A.2.21 int et_open_config_setTTL

Purpose:
This routine sets the “ttl”value for multicasting. This value deter-
mines how many “hops” through routers the packet makes.
Arguments:
(et_openconfig sconfig, int val)

1. sconfig is an open configuration
2. val is the “ttl”value for multicasting. It defaults to a value of

one which restricts multicasting to the local subnet.
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is less than

0 or greater than 254

A.2.22 int et_open_config_getTTL

Purpose:
This routine gets the “ttl” value for multicasting.
Arguments:
(et_openconfig sconfig, int *val)

1. sconfig is an open configuration
2. val is a pointer that gets filled with the ttl value

Returns:
1. ET_OK

–77 – Useful Macros

A.3 System Functions

A.3.1 int et_system_start

Purpose:
This routine creates a new ET system. The process that executes this
routine becomes the ET system process.
Arguments:
(et_sys_id *id, et_sysconfig sconfig)

1. id is a pointer to an ET system id - a value-result argument -
in which is returned the id of the new system which gets cre-
ated

2. sconfig is the desired configuration of the new ET system (set
by routines starting with et_system_config_).

Returns:
1. ET_OK
2. ET_ERROR if the system could not be created

A.3.2 int et_system_close

Purpose:
This routine closes an ET system that was started with a call to
et_system_start. All ET system threads are stopped and the shared
memory is unmapped. Only the ET system process may execute this
routine.
Arguments:
(et_sys_id id)

1. id is the id of the ET system
Returns:

1. ET_OK
2. ET_ERROR if not ET system process

Useful Macros –78 –

A.3.3 int et_system_getlocality

Purpose:
This routine returns a value indicating whether this routine is being
executed on the same machine as the ET system or remotely.
Arguments:
(et_sys_id id, int *locality)

1. id is the id of the ET system of interest
2. locality is a pointer to an integer that gets filled in with the

value ET_LOCAL if the user is on the same machine as the
ET system, ET_REMOTE if the user is on another machine,
and ET_LOCAL_NOSHARE if the user is on the same
machine but one whose operating system does not allow the
sharing of pthread mutexes (eg. Linux).

Returns:
1. ET_OK
2. ET_ERROR if locality is NULL

–79 – Useful Macros

A.3.4 int et_system_setdebug

Purpose:
This routine sets the debug output of the caller’s process for a partic-
ular ET system.
Arguments:
(et_sys_id id, int debug)

1. id is the id of the ET system of interest
2. debug can be either ET_DEBUG_NONE which means no

output, ET_DEBUG_SEVERE for output describing severe
errors, ET_DEBUG_ERROR for output describing all errors,
ET_DEBUG_WARN for output describing warnings and
errors, and ET_DEBUG_INFO for output describing all
information, warnings, and errors.

Returns:
1. ET_OK
2. ET_ERROR if debug is an invalid value

A.3.5 int et_system_getdebug

Purpose:
This routine gets the value of the caller’s debug level for a particular
ET system.
Arguments:
(et_sys_id id, int *debug)

1. id is the id of the ET system of interest
2. debug is a pointer to an integer that gets filled in with the

debug level of the ET system. See above for possible values.
Returns:

1. ET_OK
2. ET_ERROR if debug is NULL

Useful Macros –80 –

A.3.6 int et_system_getnumevents

Purpose:
This routine tells the total number of events that an ET system has.
Arguments:
(et_sys_id id, int *numevents)

1. id is the id of the ET system of interest
2. numevents is a pointer to an integer that gets filled in with

the total number of events that the ET system has.
Returns:

1. ET_OK
2. ET_ERROR if numevents is NULL

A.3.7 int et_system_geteventsize

Purpose:
This routine tells the size in bytes of standard events in an ET system.
Arguments:
(et_sys_id id, int *eventsize)

1. id is the id of the ET system of interest
2. eventsize is a pointer to an integer that gets filled in with the

size in bytes of standard events in the ET system.
Returns:

1. ET_OK
2. ET_ERROR if eventsize is NULL

–81 – Useful Macros

A.3.8 int et_system_gettempsmax

Purpose:
This routine gives the maximum number of temporary events
allowed in an ET system.
Arguments:
(et_sys_id id, int *tempsmax)

1. id is the id of the ET system of interest
2. tempsmax is a pointer to an integer that gets filled in with the

maximum number of temporary events allowed in an ET
system.

Returns:
1. ET_OK
2. ET_ERROR if tempsmax is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

A.3.9 int et_system_getstationsmax

Purpose:
This routine gives the maximum number of stations allowed in an ET
system.
Arguments:
(et_sys_id id, int *stationsmax)

1. id is the id of the ET system of interest
2. stationsmax is a pointer to an integer that gets filled in with

the maximum number of stations allowed in an ET system.
Returns:

1. ET_OK
2. ET_ERROR if stationsmax is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –82 –

A.3.10 int et_system_getprocsmax

Purpose:
This routine gives the maximum number of processes that are
allowed to open an ET system.
Arguments:
(et_sys_id id, int *procsmax)

1. id is the id of the ET system of interest
2. procsmax is a pointer to an integer that gets filled in with the

maximum number of processes that are allowed to open an
ET system.

Returns:
1. ET_OK
2. ET_ERROR if procsmax is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

A.3.11 int et_system_getattsmax

Purpose:
This routine gives the maximum number of attachments that are
allowed in an ET system.
Arguments:
(et_sys_id id, int *attsmax)

1. id is the id of the ET system of interest
2. attsmax is a pointer to an integer that gets filled in with the

maximum number of attachments that are allowed in an ET
system.

Returns:
1. ET_OK
2. ET_ERROR if attsmax is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

–83 – Useful Macros

A.3.12 int et_system_getheartbeat

Purpose:
This routine gives the current value of the heartbeat of an ET system.
For a healthy system, this value changes every heartbeat period.
Arguments:
(et_sys_id id, int *heartbeat)

1. id is the id of the ET system of interest
2. heartbeat is a pointer to an integer that gets filled in with the

current heartbeat of an ET system.
Returns:

1. ET_OK
2. ET_ERROR if heartbeat is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

A.3.13 int et_system_getpid

Purpose:
This routine gives the pid of an ET system.
Arguments:
(et_sys_id id, pid_t *pid)

1. id is the id of the ET system of interest
2. pid is a pointer that gets filled in with the pid of an ET sys-

tem.
Returns:

1. ET_OK
2. ET_ERROR if pid is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –84 –

A.3.14 int et_system_getprocs

Purpose:
This routine gives the number of processes that currently have an ET
system open.
Arguments:
(et_sys_id id, int *procs)

1. id is the id of the ET system of interest
2. procs is a pointer to an integer that gets filled in with the

number of processes currently open to an ET system.
Returns:

1. ET_OK
2. ET_ERROR if procs is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

A.3.15 int et_system_getattachments

Purpose:
This routine gives the number of attachments currently in an ET
system.
Arguments:
(et_sys_id id, int *atts)

1. id is the id of the ET system of interest
2. atts is a pointer to an integer that gets filled in with the num-

ber of attachments currently in an ET system.
Returns:

1. ET_OK
2. ET_ERROR if atts is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

–85 – Useful Macros

A.3.16 int et_system_getstations

Purpose:
This routine gives the current number of stations in an ET system
that are either idle or active (but not unused or being created).
Arguments:
(et_sys_id id, int *stations)

1. id is the id of the ET system of interest
2. stations is a pointer that gets filled in with the number of sta-

tions in an ET system that are either idle or active.
Returns:

1. ET_OK
2. ET_ERROR if stations is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

A.3.17 int et_system_gettemps

Purpose:
This routine gives the number of temporary events currently in an
ET system.
Arguments:
(et_sys_id id, int *temps)

1. id is the id of the ET system of interest
2. temps is a pointer to an integer that gets filled in with the

number of temporary events currently in an ET system.
Returns:

1. ET_OK
2. ET_ERROR if temps is NULL
3. ET_ERROR_READ for a remote user’s network read error
4. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –86 –

A.3.18 int et_system_gethost

Purpose:
This routine gives the fully qualified name of the ET system’s host
computer.
Arguments:
(et_sys_id id, char *host)

1. id is the id of the ET system of interest
2. host is a pointer that gets filled in with the ET system’s host

nam e . T o b e s a f e th e array sh ou ld b e a t l e as t
ET_MAXHOSTNAMELEN characters long.

Returns:
1. ET_OK
2. ET_ERROR if host is NULL

A.3.19 int et_system_getserverport

Purpose:
This routine gives the number of the ET system’s TCP server thread.
Arguments:
(et_sys_id id, unsigned short *port)

1. id is the id of the ET system of interest
2. port is a pointer to an unsigned short integer that gets filled

in with the port number of the ET system’s TCP server
thread.

Returns:
1. ET_OK
2. ET_ERROR if port is NULL

–87 – Useful Macros

A.4 System Configuration Functions

A.4.1 int et_system_config_init

Purpose:
This routine initializes a system configuration. This MUST be done
prior to setting any configuration parameters or all setting routines
will return an error.
Arguments:
(et_sysconfig* sconfig)

1. sconfig is pointer to a system configuration variable
Returns:

1. ET_OK if successful
2. ET_ERROR if it fails to allocate memory for configuration

data storage

A.4.2 int et_system_config_destroy

Purpose:
This routine frees the memory allocated when a configuration is
initialized by “et_system_config_init”.
Arguments:
(et_sysconfig sconfig)

1. sconfig is a system configuration
Returns:

1. ET_OK

Useful Macros –88 –

A.4.3 int et_system_config_setevents

Purpose:
This routine sets a system configuration’s total number of events.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not an

allowed value

A.4.4 int et_system_config_getevents

Purpose:
This routine gets a system configuration’s current total number of
events.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the total number of

events
Returns:

1. ET_OK

–89 – Useful Macros

A.4.5 int et_system_config_setsize

Purpose:
This routine sets a system configuration’s event size in bytes.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not an

allowed value

A.4.6 int et_system_config_getsize

Purpose:
This routine gets a system configuration’s current event size.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the event size in bytes

Returns:
1. ET_OK

Useful Macros –90 –

A.4.7 int et_system_config_settemps

Purpose:
This routine sets a system configuration’s total number of temporary
events.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

greater than zero
Notes:
The number of temp events must not be greater than the total
number of events. This in not checked in this routine, but is checked
when attempting to create an ET system.

A.4.8 int et_system_config_gettemps

Purpose:
This routine gets a system configuration’s current total number of
temporary events.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the number of temporary

events
Returns:

1. ET_OK

–91 – Useful Macros

A.4.9 int et_system_config_setstations

Purpose:
This routine sets a system configuration’s limit on how many
stations can be created.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

greater than zero

A.4.10 int et_system_config_getstations

Purpose:
This routine gets a system configuration’s limit on how many
stations can be created.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the maximum number of

stations that can be created
Returns:

1. ET_OK

Useful Macros –92 –

A.4.11 int et_system_config_setprocs

Purpose:
This routine sets a system configuration’s limit on how many user
processes can open the system.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be > 0 and <= ET_PROCESSES_MAX

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

greater than zero or not <= ET_PROCESSES_MAX
Notes:
The default value of ET_PROCESSES_MAX is 20 but may be
changed in et_private.h, requiring a recompilation of ET.

A.4.12 int et_system_config_getprocs

Purpose:
This routine gets a system configuration’s limit on how many user
processes can open the system.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the configuration’s limit

on the number of processes that can open the system.
Returns:

1. ET_OK

–93 – Useful Macros

A.4.13 int et_system_config_setattachments

Purpose:
This routine sets a system configuration’s limit on how many user
attachments to stations can exist at one time.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val must be > 0 and <= ET_ATTACHMENTS_MAX

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

greater than zero or not <= ET_ATTACHMENTS_MAX
Notes:
The default value of ET_ATTACHMENTS_MAX is 20 but may be
changed in et_private.h, requiring a recompile of the ET system
library.

A.4.14 int et_system_config_getattachments

Purpose:
This routine gets a system configuration’s limit on how many user
attachments to stations are possible.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the system configura-

tion’s limit on the number of attachments.
Returns:

1. ET_OK

Useful Macros –94 –

A.4.15 int et_system_config_setfile

Purpose:
This routine sets a system configuration’s ET system file name.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer to a string or null-terminated character array

containing the file name
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is NULL,

or val is too long

A.4.16 int et_system_config_getfile

Purpose:
This routine gets a system configuration’s ET system file name
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer to a char array that gets filled with the system

file name.
Returns:

1. ET_OK

–95 – Useful Macros

A.4.17 int et_system_config_setcast

Purpose:
This routine sets a system configuration’s method for a remote user
to discover this ET system.
Arguments:
(et_sysconfig sconfig, int val)

1. sconfig is a system configuration
2. val is the name of the method for a remote user to discover

this ET system. Set it to ET_BROADCAST for using UDP
broadcasting (the default), or set it to ET_MULTICAST for
using UDP multicasting.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not

equal to ET_BROADCAST or ET_MULTICAST
Notes:
If a user is discovering an ET system directly (with ET_DIRECT), this
configuration setting is ignored.

A.4.18 int et_system_config_getcast

Purpose:
This routine gets a system configuration’s method for a remote user
to discover this ET system.
Arguments:
(et_sysconfig sconfig, int *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with either ET_BROADCAST

or ET_MULTICAST
Returns:

1. ET_OK

Useful Macros –96 –

A.4.19 int et_system_config_setaddress

Purpose:
This routine sets an ET system configuration’s IP subnet address
used for receiving broadcasts or the address for receiving multicasts
when remote users discover this ET system.
Arguments:
(et_sysconfig sconfig, char *val)

1. sconfig is a system configuration
2. val is the IP address for broadcast or multicast communica-

tions in dotted-decimal form. If this routine is never called,
the address is set to the local subnet address (found auto-
matically).

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is NULL

or too long or too short

A.4.20 int et_system_config_getaddress

Purpose:
This routine gets an ET system configuration’s IP subnet address
used for receiving broadcasts or the address for receiving multicasts
when remote users discover this ET system.
Arguments:
(et_sysconfig sconfig, char *val)

1. sconfig is a system configuration
2. val is a character array that gets filled with the address

Returns:
1. ET_OK

–97 – Useful Macros

A.4.21 int et_system_config_setport

Purpose:
This routine sets a system configuration’s port number for the IP
broadcasting or multicasting used to discover this ET system by
remote users.
Arguments:
(et_sysconfig sconfig, unsigned short val)

1. sconfig is a system configuration
2. val is the port number of the broadcast or multicast commu-

nications. The default is ET_BROADCAST_PORT, defined
in “et .h” as 11111 . I t m ay a ls o b e s e t to
ET_MULTICAST_PORT or to any port number desired by
the user.

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is less than

1024

A.4.22 int et_system_config_getport

Purpose:
This routine gets a system configuration’s port number for the IP
broadcasting or multicasting used to discover this ET system by
remote users.
Arguments:
(et_sysconfig sconfig, unsigned short *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the port number

Returns:
1. ET_OK

Useful Macros –98 –

A.4.23 int et_system_config_setserverport

Purpose:
This routine sets a system configuration’s port number for the ET
system (tcp server thread) used to communicate with remote users.
Arguments:
(et_sysconfig sconfig, unsigned short val)

1. sconfig is a system configuration
2. val is the port number of theET system server for remote

users.
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is less than

1024
Notes:
If this routine is called and used to explicitly set the ET system’s port,
it either uses that port or the ET system process exits with an error. If
th i s rou t in e i s NO T c a l l e d , t he s ys te m tr ies to us e
ET_SERVER_PORT (defined in et.h as 11111) as its port. If that fails
it adds one to that value and tries again and so on until a couple
thousand values have been tried at which time the process exits if not
successful.

A.4.24 int et_system_config_getserverport

Purpose:
This routine gets a system configuration’s port number for the ET
system (tcp server thread) used to communicate with remote users.
Arguments:
(et_sysconfig sconfig, unsigned short *val)

1. sconfig is a system configuration
2. val is a pointer that gets filled with the port number

Returns:
1. ET_OK

–99 – Useful Macros

A.5 Event Functions

A.5.1 int et_event_new

Purpose:
This routine is used when a process wants a blank or fresh event
from the ET system into which it can place data.
Arguments:
(et_sys_id id, et_att_id att, et_event **pe, int wait, struct timespec
*time, int size)

1. id is the id of the ET system of interest
2. att is the attachment id. This is obtained by attaching the

user process to a station with et_station_attach.
3. pe is a pointer to a pointer to an event. Declare it a pointer to

an event such as “et_event *pe;”. And pass it as “&pe”.
4. wait is either ET_SLEEP, ET_ASYNC, or ET_TIMED. The

sleep option waits until an event is available before it
returns and therefore may “hang”.The timed option returns
after a time set by the last argument. Finally, the async
option returns immediately whether or not it was successful
in obtaining a new event for the caller.

5. time is used only with the wait = ET_TIMED option, where it
gives the time to wait before returning. For other options it
will be ignored.

6. size is the number of bytes desired for the event’s data
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get an event
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode
Notes:

Useful Macros –100 –

Performance will generally be best with the ET_SLEEP wait mode. It
will slow with ET_TIMED, and will crawl with ET_ASYNC. All this
routine does for a remote user is allocate memory in which to place
event data. The error of ET_ERROR_WAKEUP is returned when the
ET system dies, or a user calls et_wakeup_all or et_wakeup_attachment
on the attachmen, whilet waiting to read an event.

–101 – Useful Macros

A.5.2 int et_events_new

Purpose:
This routine is used when a process wants an array of blank or fresh
event from the ET system into which it can place data.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe[], int wait, struct timespec
*time, int size, int num, int *nread)

1. id is the id of the ET system of interest
2. att is the attachment id. This is obtained by attaching the

user process to a station with et_station_attach.
3. pe is an array of pointers to events.
4. wait is either ET_SLEEP, ET_ASYNC, or ET_TIMED. The

sleep option waits until an event is available before it
returns and therefore may “hang”.The timed option returns
after a time set by the last argument. Finally, the async
option returns immediately whether or not it was successful
in obtaining a new event for the caller.

5. time is used only with the wait = ET_TIMED option, where it
gives the time to wait before returning. For other options it
will be ignored.

6. size is the number of bytes desired for the event’s data
7. num is the number of desired events
8. nread returns the number of events actually read

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get events
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode
Notes:

Useful Macros –102 –

See et_event_new. If all processes in an ET system use block transfers
such as this one, a speed increase of over 2X the single transfer rate
is likely. On Linux a 10 fold increase is possible.

–103 – Useful Macros

A.5.3 int et_event_get

Purpose:
This routine is used when a consumer wants to read a single event
from the ET system.
Arguments:
(et_sys_id id, et_att_id att, et_event **pe, int wait, struct timespec
*time)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is a pointer to a pointer to an event. Declare it a pointer to

an event such as “et_event *pe;”. And pass it as “&pe”.
4. wait is either ET_SLEEP, ET_ASYNC, or ET_TIMED. The

sleep option waits until an event is available before it
returns and therefore may “hang”.The timed option returns
after a time set by the last argument. Finally, the async
option returns immediately whether or not it was successful
in obtaining a new event for the caller. For remote users, the
mentioned macros may be ORed with ET_MODIFY. This
indicates to the ET server that the user intends to modify the
data and so the server must NOT place the event immedi-
ately back into the ET system, but must do so only when
et_event_put is called.

5. time is used only with the wait = ET_TIMED option, where it
gives the time to wait before returning. For other options it
will be ignored.

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get an event
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode
Notes:

Useful Macros –104 –

For remote users, not specifying ET_MODIFY greatly increases ET
system efficiency as extra communication between user & system
and extra copying of the event data are avoided. The error of
ET_ERROR_WAKEUP is returned when the ET system dies, or a
user calls et_wakeup_all or et_wakeup_attachment on the attachment,
while waiting to get an event.

–105 – Useful Macros

A.5.4 int et_events_get

Purpose:
This routine is used when a process wants to read multiple events
from the ET system.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe[], int wait, struct timespec
*time, int num, int *nread)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is an array of pointers to events.
4. wait is either ET_SLEEP, ET_ASYNC, or ET_TIMED. The

sleep option waits until an event is available before it
returns and therefore may “hang”.The timed option returns
after a time set by the last argument. Finally, the async
option returns immediately whether or not it was successful
in obtaining a new event for the caller. For remote users, the
mentioned macros may be ORed with ET_MODIFY. This
indicates to the ET server that the user intends to modify the
data and so the server must NOT place the event immedi-
ately back into the ET system, but must do so only when
et_event_put is called.

5. time is used only with the wait = ET_TIMED option, where it
gives the time to wait before returning. For other options it
will be ignored.

6. num is the number of events desired to be read.
7. nread returns the number of events actually read.

Returns:
1. ET_OK, if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get events
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode

Useful Macros –106 –

Notes:
See et_event_get. If all processes in an ET system use block transfers
such as this one, a speed increase of over 2X the single transfer rate
is possible.

–107 – Useful Macros

A.5.5 int et_event_put

Purpose:
This routine is used when a process wants to return a single, previ-
ously read or new event into the ET system so processes downstream
can use it or so it can be returned to grandcentral station.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is a pointer to an event. Declare it as “et_event*pe;”,and

pass it as “pe”.
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Notes:
Only the attachment (att) used to get an event can put that event into
the ET system. If a process which did not get tries to put, an error will
be returned. This is implemented in order to prevent a user from
accidentally putting many identical events into the system thereby
causing data and system corruption.

Useful Macros –108 –

A.5.6 int et_events_put

Purpose:
This routine is used when a process wants to return multiple, previ-
ously read or new events into the ET system so processes down-
stream can use it or so it can be returned to grandcentral station.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe[], int num)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is an array of pointers to events.
4. num is the number of events to be written.

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_REMOTE for a memory allocation error of a

remote user
5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

Notes:
Only the attachment (att) used to get events can put those events into
the ET system, otherwise an error will be returned. If any one of the
events in the array is not owned by att, an error will result.

–109 – Useful Macros

A.5.7 int et_event_dump

Purpose:
This routine is used when a process wants to get rid of a single, previ-
ously read or new event so that no user processes downstream will
ever see it. It is placed directly into the ET system’s grandcentral
station which recycles it.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is a pointer to an event. Declare it as “et_event*pe;”,and

pass it as “pe”.
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –110 –

A.5.8 int et_events_dump

Purpose:
This routine is used when a process wants to get rid of multiple,
previously read or new events so that no user processes downstream
will ever see them. They are placed directly into the ET system’s
grandcentral station which recycles them.
Arguments:
(et_sys_id id, et_att_id att, et_event *pe[], int num)

1. id is the id of the ET system of interest
2. att is the attachment id.
3. pe is an array of pointers to events.
4. num is the number of events to be written.

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_REMOTE for a memory allocation error of a

remote user
5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

–111 – Useful Macros

A.5.9 int et_events_bridge

Purpose:
This routine transfers events between two ET systems. Events are
copied from the "from" ET system and placed into the "to" ET system.
A function may be provided to swap the data during the transfer.
Arguments:
(et_sys_id id_from, et_sys_id id_to, et_att_id att_from, et_att_id
att_to, et_bridgeconfig bconfig, int num, int *ntransferred)

1. id_from is the ID of the ET system from which the events are
copied

2. id_to is the ID of the ET system in which the events are
placed

3. att_from is the attachment to a station on the "from" ET sys-
tem

4. att_to is the attachment to a station on the "to" ET system
(usually GrandCentral)

5. bconfig is the configuration of the remaining transfer param-
eters (see section on Bridge Functions).

6. num is the total number of events desired to be transferred
7. ntransferred is the total number of events that were actually

transferred at the routine’s return
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get an event
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode
Notes:
For the best performance, the process calling this routine should be
on the same machine as either the "from" or "to" ET systems. Some
experimentation is in order to determine which of the two machines

Useful Macros –112 –

will run the bridging faster. The author’s experience suggests that
placing the process on the machine with the most processors or
computing power will probably give the best results.

–113 – Useful Macros

A.5.10 int et_event_getdata

Purpose:
This routine provides the pointer to an event’s data.
Arguments:
(et_event *pe, void **data)

1. pe is a pointer to event.
2. data is pointer to a pointer to the event’s data

Returns:
1. ET_OK
2. ET_ERROR if error

Useful Macros –114 –

A.5.11 int et_event_setdatastatus

Purpose:
This routine sets the status to an event’s data.
Arguments:
(et_event *pe, int status)

1. pe is a pointer to event.
2. status may be ET_DATA_OK, ET_DATA_CORRUPT, or

ET_DATA_POSSIBLY_CORRUPT. Currently, all data is
ET_DATA_OK unless a user’s process exits or crashes while
having events obtained from the ET system but not put
back. In that case, the ET system recovers the events and
places them in either GrandCentral station, the attachment’s
station’s input list, or output list depending on the station’s
configuration (see “et_station_config_setrestore”). If the
events are NOT put back into GrandCentral station to be
recycled but are placed in the station’s input or output list,
th e data s ta tu s w i l l b e co me
ET_DATA_POSSIBLY_CORRUPT. This simply warns the
user that a process previously crashed with the event and
may have corrupted its data.

Returns:
1. ET_OK
2. ET_ERROR if error

A.5.12 int et_event_getdatastatus

Purpose:
This routine provides the status of an event’s data.
Arguments:
(et_event *pe, int *status)

1. pe is a pointer to event.
2. status is a pointer which gets filled with the status of an

e ve nt ’ s da ta . T hs s ta t us c an be ET _D AT A _OK,
ET _D AT A_P OS SI BLY _CO RR UP T , or
ET_DATA_CORRUPT.

Returns:
1. ET_OK
2. ET_ERROR if error

–115 – Useful Macros

A.5.13 int et_event_setlength

Purpose:
This routine records the length of data written into an event.
Arguments:
(et_event *pe, int len)

1. pe is a pointer to event.
2. len is the length in bytes of data written into the event.

Returns:
1. ET_OK if successful
2. ET_ERROR if error

A.5.14 int et_event_getlength

Purpose:
This routine provides the length of data written into an event.
Arguments:
(et_event *pe, int *len)

1. pe is a pointer to event.
2. len is a pointer which gets filled with the length in bytes of

data written into the event.
Returns:

1. ET_OK
2. ET_ERROR if error

Useful Macros –116 –

A.5.15 int et_event_setpriority

Purpose:
This routine sets the priority of an event.
Arguments:
(et_event *pe, int pri)

1. pe is a pointer to event.
2. pri is the priority of either ET_HIGH or ET_LOW.

Returns:
1. ET_OK if successful
2. ET_ERROR if error

A.5.16 int et_event_getpriority

Purpose:
This routine provides the priority of an event.
Arguments:
(et_event *pe, int *pri)

1. pe is a pointer to event.
2. pri is a pointer which gets filled with the priority of the

event.
Returns:

1. ET_OK
2. ET_ERROR if error

–117 – Useful Macros

A.5.17 int et_event_setcontrol

Purpose:
This routine set the control array of an event.
Arguments:
(et_event *pe, int con[], int num)

1. pe is a pointer to event.
2. con is an integer array.
3. num is the number of elements in the array.

Returns:
1. ET_OK if successful
2. ET_ERROR if error

A.5.18 int et_event_getcontrol

Purpose:
This routine provides the control array of an event.
Arguments:
(et_event *pe, int con[])

1. pe is a pointer to event.
2. con is an integer array.

Returns:
1. ET_OK if successful
2. ET_ERROR if error

Useful Macros –118 –

A.5.19 int et_event_setendian

Purpose:
This routine sets the endian value of an event’s data. Although an ET
system automatically keeps track of the endianness of an event’s
data, this routine can override and directly set it.
Arguments:
(et_event *pe, int endian)

1. pe is a pointer to event.
2. endian may be set to ET_ENDIAN_BIG,

ET_ENDIAN_LITTLE, ET_ENDIAN_LOCAL (same endian
as local host), ET_ENDIAN_NOTLOCAL (opposite endian
as local host), or ET_ENDIAN_SWITCH (switch the endian
from whatever it is).

Returns:
1. ET_OK if successful
2. ET_ERROR if error

A.5.20 int et_event_getendian

Purpose:
This routine provides the endian value of an event’s data.
Arguments:
(et_event *pe, int *endian)

1. pe is a pointer to event.
2. endian is a pointer which gets filled with the either

ET_ENDIAN_BIG or ET_ENDIAN_LITTLE.
Returns:

1. ET_OK
2. ET_ERROR if error

–119 – Useful Macros

A.5.21 int et_event_needtoswap

Purpose:
This routine indicates whether an event’s data needs to be swapped
or not.
Arguments:
(et_event *pe, int *swap)

1. pe is a pointer to event.
2. swap is a pointer which gets filled in with either ET_SWAP

or ET_NOSWAP.
Returns:

1. ET_OK if successful
2. ET_ERROR if error

A.5.22 int et_event_CODAswap

Purpose:
This routine swaps the data of an event in CODA format. The data is
swapped in the event’ s data buffer and therefore irreversibly
mangles the data. It also takes care of header information concerning
the data’s endian value so “et_event_setendian”does NOT need to
be called.
Arguments:
(et_event *pe)

1. pe is a pointer to event.
Returns:

1. ET_OK
2. ET_ERROR if error

Useful Macros –120 –

A.6 Station Functions

A.6.1 int et_station_create

Purpose:
This routine creates a station provided that it does not already exist
and the maximum number of stations do not yet exist. The station’s
s ta tu s i s s e t t o ET _ST AT ION _ID LE. Th is c hang es to
ET_STATION_ACTIVE when a process attaches to it. The ET system
is immediately notified of the new station upon creation and will
transfer events in and out as soon as it is active.
Arguments:
(et_sys_id id, et_stat_id *stat_id, char *stat_name, et_stat_config
sconfig)

1. id is the id of the ET system of interest
2. stat_id is a pointer to a station id number and returns the

value of the newly created station’s id.
3. stat_name is the station name
4. sconfig is a station configuration handle

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_EXISTS if station already exists (stat_id is set to

the existing station’s id)
5. ET_ERROR_TOOMANY if the maximum number of sta-

tions already exist
6. ET_ERROR_REMOTE for a memory allocation error of a

remote user
7. ET_ERROR_READ for a remote user’s network read error
8. ET_ERROR_WRITE for a remote user’s network write error

–121 – Useful Macros

A.6.2 int et_station_remove

Purpose:
This routine deletes a station provided it is not grandcentral and
provided there are no attached processes. The station’s status is set
to ET_STATION_UNUSED.
Arguments:
(et_sys_id id, et_stat_id stat_id)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote users network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –122 –

A.6.3 int et_station_attach

Purpose:
This routine will attach the user to a station -- meaning that the user
is free to read and write events from that station or to request new
events. It returns a unique attachment id in the second argument
which is to be used in all transactions with the station.
Arguments:
(et_sys_id id, et_stat_id stat_id, et_att_id *att)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number
3. att is a pointer to a attachment id which gets filled in by this

routine.
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_REMOTE for memory allocation of a remote

user
5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

Notes:
When a user process attaches to a station, it is marked as an active
station, which means it will start receiving events. To remove an
attachment, call the routine “et_station_detach”.

–123 – Useful Macros

A.6.4 int et_station_detach

Purpose:
This routine will detach a user attachment from a station meaning
that the process can no longer read or write events from that station.
It undoes what et_station_attach does.
Arguments:
(et_sys_id id, et_att_id att)

1. id is the id of the ET system of interest
2. att is the attachment id.

Returns:
1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Notes:
If this routine detaches the last attachment to a station, it marks the
station as idle. In other words, the station stops receiving events
since no one is there to read them. All events remaining in the
station’s input list (after the detachment) will be moved to the output
list and sent to other stations. One must detach all attachments to a
station before the station can be removed.

Useful Macros –124 –

A.6.5 void et_wakeup_attachment

Purpose:
This routine will wake up a single attachment that is blocked,
waiting to read events from a station. If the user is remote, nothing is
done.
Arguments:
(et_sys_id id, et_att_id att)

1. id is the id of the ET system of interest
2. att is the attachment id.

Returns:
1. ET_OK if successful
2. ET_ERROR if bad att argument
3. ET_ERROR_WRITE if a remote user’s network write error

A.6.6 void et_wakeup_all

Purpose:
This routine will wake up all attachments that are blocked, waiting
to read events from a station. If the user is remote, nothing is done.
Arguments:
(et_sys_id id, et_stat_id stat_id)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.

Returns:
1. ET_OK if successful
2. ET_ERROR if bad stat_id argument
3. ET_ERROR_WRITE if a remote user’s network write error

–125 – Useful Macros

A.6.7 int et_station_isattached

Purpose:
Is att attached to station stat_id?
Arguments:
(et_sys_id id, et_stat_id stat_id, et_att_id att)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. att is the attachment id.

Returns:
1. 1 if attached
2. 0 if not attached
3. ET_ERROR for bad argument(s)
4. ET_ERROR_DEAD if ET system is dead
5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

A.6.8 int et_station_exists

Purpose:
Given the name of a station, this routine tells whether the station
exists or not. If it does, it gives a its id.
Arguments:
(et_sys_id id, et_stat_id *stat_id, char *stat_name)

1. id is the id of the ET system of interest
2. stat_id is a pointer to a station id which is filled if stat_name

exists.
3. stat_name is the station name

Returns:
1. 1 if station exists
2. 0 if station does not exist
3. ET_ERROR for bad stat_name argument
4. ET_ERROR_DEAD if ET system is dead.
5. ET_ERROR_REMOTE for a memory allocation error of a

remote user
6. ET_ERROR_READ for a remote user’s network read error
7. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –126 –

A.6.9 int et_station_name_to_id

Purpose:
Given the name of a station, this routine will return its id.
Arguments:
(et_sys_id id, et_stat_id *stat_id, char *name)

1. id is the ET system id
2. stat_id is a pointer that get filled in with the station’s id num-

ber.
3. name is the station name

Returns:
1. ET_OK
2. ET_ERROR if no station by that name exists or stat_name is

null
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_REMOTE for a memory allocation error of a

remote user
5. ET_ERROR_READ for a remote user’s network read error
6. ET_ERROR_WRITE for a remote user’s network write error

–127 – Useful Macros

A.6.10 int et_station_getattachments

Purpose:
Gives the number of attachments to a station. This returns an error
for unused stations.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *numatts)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. numatts is a pointer to int which gets filled in with the num-

ber of attachments
Returns:

1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

A.6.11 int et_station_getstatus

Purpose:
Return a station’s status.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *status)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. status is a pointer which gets filled in with the status of the

station
Returns:

1. ET_OK if successful
2. ET_ERROR for bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead.
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –128 –

A.6.12 int et_station_getinputcount

Purpose:
Gives the number of events in a station’s input list. This number
changes rapidly and is likely to be out-of-date immediately.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *cnt)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. cnt is a pointer to int which gets filled in with the number of

events in the station’s input list
Returns:

1. ET_OK if successful
2. ET_ERROR for bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead.
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

A.6.13 int et_station_getoutputcount

Purpose:
Gives the number of events in a station’s output list. This number
changes rapidly and is likely to be out-of-date immediately.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *cnt)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. cnt is a pointer which gets filled in with the number of

events in the station’s output list
Returns:

1. ET_OK if successful
2. ET_ERROR for bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead.
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

–129 – Useful Macros

A.6.14 int et_station_getblock

Purpose:
Gets the value of a station’s blocking mode.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *block)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. block is a pointer which gets filled in with the blocking mode

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

A.6.15 int et_station_getuser

Purpose:
Gets the value of a station’s user mode.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *user)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. user is a pointer which gets filled in with the user mode

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –130 –

A.6.16 int et_station_getrestore

Purpose:
Gets the value of a station’s restore mode.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *restore)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. restore is a pointer which gets filled in with the restore mode

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

A.6.17 int et_station_getselect

Purpose:
Gets the value of a station’s select mode.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *select)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. select is a pointer which gets filled in with the select mode

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

–131 – Useful Macros

A.6.18 int et_station_getcue

Purpose:
Gets a station’s cue value.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *cue)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. cue is a pointer which gets filled in with the cue value

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

A.6.19 int et_station_getprescale

Purpose:
Gets a station’s prescale value.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *prescale)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. prescale is a pointer which gets filled in with the prescale

value
Returns:

1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Useful Macros –132 –

A.6.20 int et_station_getlib

Purpose:
Gets a station’s shared library name.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *lib)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. lib is a character array which gets filled in with the lib name

Returns:
1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Notes:
A station has a shared library name associated with it only in the
ET_STATION_SELECT_USER select mode in which the user
supplies his own function to select events.

–133 – Useful Macros

A.6.21 int et_station_getfunction

Purpose:
Gets a station’s function name.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *function)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. function is a character array which gets filled in with the

function name
Returns:

1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

Notes:
A station has a function name associated with it only in the
ET_STATION_SELECT_USER select mode in which the user
supplies his own function to select events.

Useful Macros –134 –

A.6.22 int et_station_getselectwords

Purpose:
Gets a station’s array of selection integers (words) used to select
events.
Arguments:
(et_sys_id id, et_stat_id stat_id, int *select)

1. id is the id of the ET system of interest
2. stat_id is the station’s id number.
3. select is an integer array which gets filled in with the sta-

tion’s selection array
Returns:

1. ET_OK if successful
2. ET_ERROR if station is unused or bad stat_id argument
3. ET_ERROR_DEAD if ET system is dead
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error

–135 – Useful Macros

A.7 Station Configuration Functions

A.7.1 int et_station_config_init

Purpose:
This routine initializes a station configuration. This MUST be done
prior to setting any configuration parameters or all setting routines
will return an error.
Arguments:
(et_statconfig* sconfig)

1. sconfig is pointer to a station configuration variable
Returns:

1. ET_OK if successful
2. ET_ERROR if it fails to allocate memory for configuration

data storage

A.7.2 int et_station_config_destroy

Purpose:
This routine frees the memory allocated when a configuration is
initialized by “et_station_config_init”.
Arguments:
(et_statconfig sconfig)

1. sconfig is a station configuration
Returns:

1. ET_OK

Useful Macros –136 –

A.7.3 int et_station_config_setblock

Purpose:
This routine sets a station configuration’s block mode.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be either ET_STATION_BLOCKING or

ET_STATION_NONBLOCKING
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not one

of the allowed values

A.7.4 int et_station_config_getblock

Purpose:
This routine gets a station configuration’s current block mode value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current value of the

configuration block mode
Returns:

1. ET_OK

–137 – Useful Macros

A.7.5 int et_station_config_setselect

Purpose:
This routine sets a station configuration’s select mode.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be either ET_STATION_SELECT_ALL or

ET _STA T ION_SE LEC T_M AT C H, or
ET_STATION_SELECT_USER

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not one

of the allowed values

A.7.6 int et_station_config_getselect

Purpose:
This routine gets a station configuration’s current select mode value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current value of the

configuration select mode
Returns:

1. ET_OK

Useful Macros –138 –

A.7.7 int et_station_config_setuser

Purpose:
This routine sets a station configuration’s user mode.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be either ET_STATION_USER_MULTI or

ET_STATION_USER_SINGLE
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not one

of the allowed values

A.7.8 int et_station_config_getuser

Purpose:
This routine gets a station configuration’s current user mode value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current value of the

configuration user mode
Returns:

1. ET_OK

–139 – Useful Macros

A.7.9 int et_station_config_setrestore

Purpose:
This routine sets a station configuration’s restore mode.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be either ET_STATION_RESTORE_OUT or

ET _STA T ION_R ES T OR E_IN, or
ET_STATION_RESTORE_GC

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not one

of the allowed values

A.7.10 int et_station_config_getrestore

Purpose:
This routine gets a station configuration’s current restore mode
value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current value of the

configuration restore mode
Returns:

1. ET_OK

Useful Macros –140 –

A.7.11 int et_station_config_setcue

Purpose:
This routine sets the size of a station configuration’s input list cue
when the block mode is ET_STATION_NONBLOCKING.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not an

allowed value
Notes:
The value of the cue must not exceed the total number of events in
the system. This is not checked until a station is created with this
configuration - at which time cue is set to the total number of events
in the system if it is set too high in this routine. Take notice that
setting the value of the cue to the total # of events will, in essence,
change the station into one which blocks (block mode of
ET_STATION_BLOCKING). The reason is that all events will now
pass through this station.

A.7.12 int et_station_config_getcue

Purpose:
This routine gets a station configuration’s current cue value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current cue value

Returns:
1. ET_OK

–141 – Useful Macros

A.7.13 int et_station_config_setprescale

Purpose:
This routine sets the station configuration’s prescale when the block
mode is ET_STATION_BLOCKING.
Arguments:
(et_statconfig sconfig, int val)

1. sconfig is a station configuration
2. val must be greater than zero

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized or val is not an

allowed value

A.7.14 int et_station_config_getprescale

Purpose:
This routine gets a station configuration’s current prescale value.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer that gets filled with the current prescale value

Returns:
1. ET_OK

Useful Macros –142 –

A.7.15 int et_station_config_setselectwords

Purpose:
This routine sets the values of integers in the station configuration’s
array used to select events.
Arguments:
(et_statconfig sconfig, int val[])

1. sconfig is a station configuration
2. val is an array of integers

Returns:
1. ET_OK
2. ET_ERROR if the sconfig was not initialized

A.7.16 int et_station_config_getselectwords

Purpose:
This routine gets a station configuration’s current select values.
Arguments:
(et_statconfig sconfig, int val[])

1. sconfig is a station configuration
2. val is an array that gets filled with the current select values

Returns:
1. ET_OK

–143 – Useful Macros

A.7.17 int et_station_config_setlib

Purpose:
This routine sets the value of a station configuration’s shared library
name - used for loading a user’s function to select events.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer to a string or null-terminated character array

containing the shared library name
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized, or val is NULL,

or val is too long

A.7.18 int et_station_config_getlib

Purpose:
This routine gets a station configuration’s current shared library
name.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer to a character array that gets filled with the

current shared library name
Returns:

1. ET_OK

Useful Macros –144 –

A.7.19 int et_station_config_setfunction

Purpose:
This routine sets the value of a station configuration’s function name
- loaded from the shared library and used for allowing the user to
select events.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer to a string or null-terminated character array

containing the function name
Returns:

1. ET_OK
2. ET_ERROR if the sconfig was not initialized, or val is NULL,

or val is too long

A.7.20 int et_station_config_getfunction

Purpose:
This routine gets a station configuration’s current function name.
Arguments:
(et_statconfig sconfig, int *val)

1. sconfig is a station configuration
2. val is a pointer to a character array that gets filled with the

current function’s name
Returns:

1. ET_OK

–145 – Useful Macros

A.8 Bridge Functions

A.8.1 int et_events_bridge

Purpose:
This routine transfers events between two ET systems. Events are
copied from the "from" ET system and placed into the "to" ET system.
A function may be provided to swap the data during the transfer.
Arguments:
(et_sys_id id_from, et_sys_id id_to, et_att_id att_from, et_att_id
att_to, et_bridgeconfig bconfig, int num, int *ntransferred)

1. id_from is the ID of the ET system from which the events are
copied

2. id_to is the ID of the ET system in which the events are
placed

3. att_from is the attachment to a station on the "from" ET sys-
tem

4. att_to is the attachment to a station on the "to" ET system
(usually GrandCentral)

5. bconfig is the configuration of the remaining transfer param-
eters

6. num is the total number of events desired to be transferred
7. ntransferred is the total number of events that were actually

transferred at the routine’s return
Returns:

1. ET_OK if successful
2. ET_ERROR if error
3. ET_ERROR_REMOTE for a memory allocation error of a

remote user
4. ET_ERROR_READ for a remote user’s network read error
5. ET_ERROR_WRITE for a remote user’s network write error
6. ET_ERROR_DEAD if ET system is dead
7. ET_ERROR_WAKEUP if told to stop sleeping while trying

to get an event
8. ET_ERROR_TIMEOUT if timeout on ET_TIMED option
9. ET_ERROR_BUSY if cannot get access to events due to

activity of other processes when in ET_ASYNC mode.
10. ET_ERROR_EMPTY if no events available in ET_ASYNC

mode
Notes:

Useful Macros –146 –

For the best performance, the process calling this routine should be
on the same machine as either the "from" or "to" ET systems. Some
experimentation is in order to determine which of the two machines
will run the bridging faster. The author’s experience suggests that
placing the process on the machine with the most processors or
computing power will probably give the best results.

–147 – Useful Macros

A.8.2 int et_bridge_config_init

Purpose:
This routine initializes a configuration used by the routine
“et_events_bridge”in transferring events between two ET systems.
This MUST be done prior to setting any configuration parameters or
all setting routines will return an error.
Arguments:
(et_bridgeconfig *config)

1. config is pointer to a bridge configuration
Returns:

1. ET_OK if successful
2. ET_ERROR if it fails to allocate memory for configuration

data storage

A.8.3 int et_bridge_config_destroy

Purpose:
This routine frees the memory allocated when a configuration is
initialized by “et_bridge_config_init”.
Arguments:
(et_bridgeconfig config)

1. config is a bridge configuration
Returns:

1. ET_OK

Useful Macros –148 –

A.8.4 int et_bridge_config_setmodefrom

Purpose:
This routine sets the mode of getting events from the "from" ET
system.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is et to either ET_SLEEP, ET_TIMED, or ET_ASYNC and

determines the mode of getting events from the "from" ET
system. The default is ET_SLEEP.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized or val is not

ET_SLEEP, ET_TIMED, or ET_ASYNC

A.8.5 int et_bridge_config_getmodefrom

Purpose:
This routine gets the mode of getting events from the "from" ET
system.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with ET_SLEEP, ET_TIMED,

or ET_ASYNC
Returns:

1. ET_OK
2. ET_ERROR

–149 – Useful Macros

A.8.6 int et_bridge_config_setmodeto

Purpose:
This routine sets the mode of getting nre events from the "to" ET
system.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is et to either ET_SLEEP, ET_TIMED, or ET_ASYNC and

determines the mode of getting new events from the "to" ET
system. The default is ET_SLEEP.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized or val is not

ET_SLEEP, ET_TIMED, or ET_ASYNC

A.8.7 int et_bridge_config_getmodeto

Purpose:
This routine gets the mode of getting new events from the "to" ET
system.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with ET_SLEEP, ET_TIMED,

or ET_ASYNC
Returns:

1. ET_OK
2. ET_ERROR

Useful Macros –150 –

A.8.8 int et_bridge_config_setchunkfrom

Purpose:
This routine sets the maximum number of events to get from the
"from" ET system in a single call to “et_events_get”- the number of
events to get in one chunk.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is any integer greater than one. The default is 100.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized or val less than one.

A.8.9 int et_bridge_config_getchunkfrom

Purpose:
This routine gets the maximum number of events to get from the
"from" ET system in a single call to “et_events_get”.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with the number

Returns:
1. ET_OK
2. ET_ERROR

–151 – Useful Macros

A.8.10 int et_bridge_config_setchunkto

Purpose:
This routine sets the maximum number of new events to get from the
"to" ET system in a single call to “et_events_new”- the number of
events to get in one chunk.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is any integer greater than one. The default is 100.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized or val less than one.

A.8.11 int et_bridge_config_getchunkto

Purpose:
This routine gets the maximum number of new events to get from
the "to" ET system in a single call to “et_events_new”.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with the number

Returns:
1. ET_OK
2. ET_ERROR

Useful Macros –152 –

A.8.12 int et_bridge_config_settimeoutfrom

Purpose:
This routine sets the time to wait for the "from" ET system during all
“et_events_get” calls when the mode is set to ET_TIMED.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is the time to wait. The default is 0 seconds.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized.

A.8.13 int et_bridge_config_gettimeoutfrom

Purpose:
This routine gets the time to wait for the "from" ET system during all
“et_events_get” calls when the mode is set to ET_TIMED.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with the time

Returns:
1. ET_OK
2. ET_ERROR

–153 – Useful Macros

A.8.14 int et_bridge_config_settimeoutto

Purpose:
This routine sets the time to wait for the "to" ET system during all
“et_events_new” calls when the mode is set to ET_TIMED.
Arguments:
(et_bridgeconfig config, int val)

1. config is a bridge configuration
2. val is the time to wait. The default is 0 seconds.

Returns:
1. ET_OK
2. ET_ERROR if config was not initialized.

A.8.15 int et_bridge_config_gettimeoutto

Purpose:
This routine gets the time to wait for the "to" ET system during all
“et_events_new” calls when the mode is set to ET_TIMED.
Arguments:
(et_bridgeconfig config, int *val)

1. config is a bridge configuration
2. val is a pointer that gets filled with the time

Returns:
1. ET_OK
2. ET_ERROR

Useful Macros –154 –

A.8.16 int et_bridge_config_setfunc

Purpose:
This routine sets the function used to automatically swap data from
one endian to another when bridging events between two ET
systems.
Arguments:
(et_bridgeconfig config, ET_SWAP_FUNCPTR func)

1. config is a bridge configuration
2. func is the name of the function or function pointer. The

default is NULL (no swapping).
Returns:

1. ET_OK
2. ET_ERROR if config was not initialized.

Notes:
The function must be of the form: int func(et_event *src, et_event
*dest, int bytes, int same_endian). It returns ET_OK if successful
otherwise ET_ERROR. The arguments consists of: src which is a
pointer to the event whose data is to be swapped, dest which is a
pointer to the event where the swapped data goes, bytes which tells
the length of the data in bytes, and same_endian which is a flag equal-
ling one if the machine and the data are of the same endian and zero
otherwise. This function must be able to work with src and dest being
the same event. With this as a prototype, the user can write a routine
which swaps data in the appropriate manner. Notice that the first
two arguments are pointers to events and not data buffers. This
allows the writer of such a routine to have access to any of the event’s
header information. In general, such functions should NOT call
“et_event_setendian”in order to change the registered endian value
of the data. This is already taken care of in “et_events_bridge”.

–155 – Useful Macros

A.8.17 int et_bridge_CODAswap

Purpose:
This function can be used as an argument in the routine
et_bridge_config_setfunc to provide automatic swapping of CODA
format data when bridging events between two ET systems.
Arguments:
(et_event *src, et_event *dest, int bytes, int same_endian)

1. src is a pointer to an event whose data is to be swapped
2. dest is a pointer to an event where the swapped data goes
3. bytes is the length of the data in bytes
4. same_endian is a flag equalling one if the machine and the

data are of the same endian and zero otherwise
Returns:

1. ET_OK

