
CODA User’s Manual-1

APPENDIX C Readout Controller Configuration File
(Language Summary - Version 2.0)

This appendix gives a summary of the data acquisition statements (CODA Readout Lan-
guage or crl) used to build readout lists for the supported FASTBUS and VME and
CAMAC ROC’s (readout controllers) as well as the format of the files containing these
lists. (Details on the ROCs functions as well as the ROC and readout list architecture
can be found elsewhere.) The crl files must be compiled with the makelist utility, and the
name of the compiled files are passed to the ROC by an entry in a run configuration
table of the Run Control database. Finally, the CODA crl->c compiler (ccrl) may be
used independently of the makelist utility to generate resulting c code from the crl file.
The readout language is designed to be complete enough for most experimenters, and
hides many of the board specific implementation details.

C.1 File Format

Each ROC configuration file is composed of 1 or more sections of code to be executed
upon receipt of a corresponding event, either a hardware trigger or a change-of-state
command from Run Control. In addition there may be a section of declarations and/or
definitions at the top of the file, for example to define constants, global variables, and
compiler options. Each section other than the declaration/definition section starts with a
“begin section-name” and ends with “end section-name”. More experienced program-
mers can take advantage of the ability to embed their own c code into the crl file directly
or via an optional include statement:

comments start with pound signs

readout list Fred # give list a name

sfi readout # set compiler for SFI hardware

const SLOTS = 5 # constant definition

variable i # global variable declaration

include “mycode.h” # include users c code

begin usercode # begin section for user specific routine

%% /* imbed section of c code using %% */

...

%% /* c comments also allowed anywhere */

end usercode # end must have matching name

begin prestart # hardware initialization

...

usercode(); /*single line c code requires semicolon*/

end prestart

Readout Controller Configuration File

-2 CODA User’s Manual

C.2 Compiler Flags

The first non-comment lines of code select a readout list name, event buffer sizes, what
type of readout hardware is being used, and whether the readout will be triggered by
interrupt or by polling. The readout list name is specified by

readout list SFI1

where the name (e.g. SFI1) must be a single word and is case sensitive.

The next statement is optional and specifies the maximum size and number of event
buffers to create for the readout list event pool. The default, a maximum event size of 4
Kilobytes and number of 512 buffers (a total of 2 MBytes) is used otherwise.

maximum 256,1000 # create 1000 256 Byte buffers

If execution of the trigger routine(s) is to be determined by polling of a variable or hard-
ware register then the next statement should be present. This statement is mandatory for
test and event mode readout.

polling

Next, there must be a line containing one of the key statements for FASTBUS, SFI,
CAMAC, or VME to enable support for the corresponding hardware:

camac readout # uses camac standard routines

vme readout # camac and vme may both be used

fastbus readout # FSCC fastbus routines included

sfi readout # SFI/fastbus routines included

test readout # generates test triggers

event readout # use for secondary rol only

If the fastbus readout option is chosen there are several additional flags which can be set
enabling different options. These are,

inline fastbus # Inlines all FB routines for faster
execution

nocheck fastbus # Turns off error checking. Speeds up
execution, but should be used only
when user is confident that FB
readout is operating properly

parallel link # Redirects data flow through the
FSCC output port into a VME memory
module. (requires correct hardware)

Finally for fastbus, sfi, and vme readout options the following statement can be added to
allow external triggers to come from the trigger supervisor.

ts control # Should be used when the FSCC SFI or
VME crate is being triggered by the
Trigger Supervisor (requires
Trigger Supervisor and TS interface
cards)

CODA User’s Manual-3

C.3 Code Sections

There are 4 types of code sections: a compiler option.global declaration section, readout
(trigger) functions, state transition command functions, and user command functions. A
minimal but compilable readout list shell (which does nothing except not Crash) looks
like as follows:

readout list FRED

polling

test readout

begin download

end download

begin prestart

end prestart

begin end

end end

begin pause

end pause

begin go

end go

begin trigger usertrig

end trigger

begin done usertrig

end done

begin done

end done

In the above example the rol named FRED is a test list. It contains no global declara-
tions and a begin-end function declaration for each of the Run Control transitions
(Download, Prestart, End, Pause, and Go). It contains a single trigger-done pair of rou-
tines named ‘usertrig’, and finally it contains the global done routine (unamed).

The CODA Readout software supports the use of multiple trigger sources. For each
source there must exist a trigger-done pair that is uniquely named. Readout of an event
is complete when all valid trigger sources have been serviced (i.e. trigger routine fol-
lowed by done executed for that source). Then the global done routine is executed and
all sources re-enabled for a new event. If ts control is enabled then the ROC expects the
hardware trigger information to be conveyed on the Trigger Supervisor ROC cable con-
nected to a TS interface card (TJNAF design). The ROC receives a 6 bit code (4 trigger
type bits, one sync bit, and a late fail bit). This code is generated via memory lookup in
the Readout Code MLU of the Trigger Supervisor, with the trigger inputs as an address.

Readout Controller Configuration File

-4 CODA User’s Manual

When the ROC receives the trigger from the TS a named “trigger” list will be executed
and a local variable called “EVTYPE” will be set with the value of the trigger informa-
tion from the TS (if ts control is not specified then the default value of EVTYPE=1).

In addition to specifying instructions for hardware triggers, the following state transi-
tions may also have ROC instructions associated with them: download, prestart, go,
pause, and end (with identical readout section names: download, etc.):

begin prestart

... # clear/initialize hardware

end prestart

The user may define hist own routines that may be called (or spawned as a task in
VxWorks) in any of the transition lists. These routines are created as void so no values
may be returned:

begin userCode

... # user specific (can be called from

... # other lists)

end userCode

Finally, the user has available a global declaration section for the readout list. Constant
definitions, variable declarations as well as include statements may be added to the glo-
bal section after the final compiler directive but before the first begin code statement:

readout list FRED

maximum 1024,500

sfi readout

const SLOT = 12 # Constant Slot number of ADC

include “mycode.h” # include my own C code

unsigned long ped[64]; # declare an array to hold pedistals

begin download

...

List statements may either be English-like readout statements defined in the next sec-
tion, or may be any valid c expressions (the file is first passed to a CODA readout lan-
guage interpreter (ccrl), and then to the c pre-processor and compiler). Individual lines
of c code must end with a semicolon. Larger sections of c code may be imbedded by
placing %% prior to and at the end of the code section. Very large sections of user c
code may best be added by using the include statement in the global section of the read-
out list.

C.4 Language Elements

CODA Readout Language (crl) statements include flow control, arithmetic operations,
and hardware I/O statements. Each of the statements recognized by the CODA pre-pro-
cessor begins with a keyword, and may have additional keywords or expressions follow-
ing.

In the statements that follow, optional elements are shown in [], and alternative choices
are shown in [] separated by |.

CODA User’s Manual-5

Variables and Expressions
Four byte unsigned integers, with case sensitive names of up to 31 characters, may be
declared either at the top of the file (global variable) or within a section (local variable).

variable xxx,yyy,zzz

Constants may be declared at the top of the file by indicating the keyword const, name
followed by an equals sign followed by a value:

const NSLOTS = 6

Expressions may be built up from variables and arithmetic operators: * / + - (). Logical
expressions may use the conventional logical operators < > == != <= >= or may use
English equivalents:

is less than

is greater than

is equal to

is not equal to

is less than or equal to

is greater than or equal to

Logical expressions may be combined using parentheses and the operators and, or or
their c equivalents:

(xxx is greater than 7) and (yyy is 8)

(xxx > 7) && (yyy == 8)

Arithmetic Statements
Constructs exist for clearing, incrementing, and decrementing a variable, as well as
assigning an expression to a variable:

clear xxx

increment xxx

decrement xxx

xxx = expression

Flow Control
There are 4 flow control constructs: begin...end, while...end while,
if...else if...else...end if, and select on...case...end select:

begin section-name

 statement(s)

end section-name

while logical-expression

 statement(s)

 ...

 break # alternative way to exit loop

 ...

end while

if logical-expression then

 statement(s)

else if logical-expression then

Readout Controller Configuration File

-6 CODA User’s Manual

 statement(s)

else

 statement(s)

end if

The else expressions are optional; there may be as many else ifclauses as desired.

select on expression

case constant1

 statement(s)

case constant2

 statement(s)

...

default

 statement(s)

end select

No explicit breakstatement is required in a case clause: flow does not fall from one case
into another, but rather terminates at the next case or end statement.

Trigger Elements
For each hardware type (as defined by the compiler keyword sfi readout, camac readout,
etc.) there is the possibility to enable triggers from multiple sources. For instance the
SFI fastbus interface can accept triggers from a total of eight external sources (3 NIM
inputs, 4 dECL inputs, and the TJNAF TS interface card). Initialization of trigger
sources as well as associating a trigger routine with each of these sources should be
done in the prestart routine. Subsequent enabling and disabling of the triggers will be
handled for the user in the go, pause, and end routines.

First the particular hardware type should be initialized where hardware_type = FAST-
BUS, SFI, VME, CAMAC, TEST, or EVENT:

init trig source hardware_type

Then the user must link a specific source type to a trigger and done routine:

link async trig source h_type s_type to <name> and <name>_done

or

link sync trig source h_type s_type to <name> and <name>_done

The async or sync keywords indicate a interrupt or polled source respectively. The value
of s_type is dependent on the hardware_type. A value of 1 for s_type is always valid and
indicates the TS interface card for SFI, FASTBUS, and VME, a slot=1 LAM for
CAMAC, internal triggers for TEST, and the Primary readout list output queue for the
EVENT hardware type. Finally, <name> refers to the name of the users trigger routine
which should also be defined in the readout list.

Specific physics event types can be enabled for specific source types. Physics event
types take on values between 1-15. To enable a type ev_type for a source:

event type ev_type then read h_type s_type

Event Building
The CODA event format is built upon a bank structure. Typically, one event from a ROC
contains a single bank of data of a specific type (i.e. longwords as read from the front

CODA User’s Manual-7

end modules); However, it is often useful to build a ROC event that has a multi-bank
structure. The following open event...close event and open bank...close bank constructs
are available to facilitate event building on the ROC:

open event type <xxx> of data_type

open bank <xxx> of data_type [code <zzz>]

close bank

close event

The variable <xxx> typically contains a unique bank or event type identifier (16 bits).
For an event bank this is typically the physics event type (1-15). The data_type is a
string indicating the type of data that is in the bank or event. For example:

BT_UI4 4 byte integers

BT_UI2 2 byte integers

BT_CHAR null terminated ASCII string

BT_BANK a bank containing banks

The code variable <zzz> is an optional 8-bit value entered into the low byte of the bank
header. For an event bank this defaults to the event number (modulo 256).

Hardware I/O
There are 3 basic hardware operations: read from a hardware module, write to a module,
and write to the output data stream. The read from a module also has a variations that
allows reading into a variable or directly into the output data stream. In addition, there is
a clear crate statement which performs the appropriate operation for that crate.

Output, either explicitly done with the output statement, or implicitly done by a hard-
ware read operation, is assumed to be in units of 4 byte integers. Each time a code sec-
tion is called, it produces a single bank of 4 byte integers. The bank header (including
bank length) is inserted automatically.

Generic I/O
The crate clear or reset operation performs a CAMAC crate clear or Z or a FASTBUS
reset. The crate number is ignored for FASTBUS, and defaults to 0 for CAMAC. for the
SFI case the crate number corresponds to the base VME address of the SFI as seen from
the CPU for A24/D32 address space (i.e. 0xe0e00000).

clear crate [number]

reset crate [number]

The output statement transfers a single integer variable or constant into the output data
stream. The output range statement transfers multiple integers to the data stream from
an indexed array:

output yyy

output range xx yy Z # send Z[xx] through Z[yy] into the

output data stream

FASTBUS I/O
Reading and writing FASTBUS modules is a 4 step operation: (1) address the module,
(2) select which register in the module to read or write (secondary address), (3) transfer
1 or more words (4 byte) of data, and (4) release the module. Modules have a unique

Readout Controller Configuration File

-8 CODA User’s Manual

geographical address (slot number, used most often), and may have one or more logical
addresses (used in special applications). In addition, they have 2 internal address spaces
data and control. Control space is typically where control registers are found for setting
board options, and data space is typically used to read event data.

fastbus readout

...

geographic data slot-number

geographic control slot-number

logical data laddr

logical control laddr

secondary address saddr

The FASTBUS spec allows for addressing of multiple modules at the same time (called
broadcast addressing). The syntax for this is

broadcast control broadcast_addr

where broadcast_addr is a module or function specific number. Common examples
would be the All Local Module Address 1 or the Sparse Data Scan 9. Refer to specific
FASTBUS module manuals on support for broadcast addressing.

Once the addressing has been set up, any number of words may be transferred (depend-
ing on the application). The read statement transfers a single word, and the block read
statement transfers a variable length block of data (up to an optional maxwrds number of
data words).

read # transfer 1 word to output

read into <xxx> # transfer 1 word to variable

write yyy # write yyy to current address

block read [maxwrds] # transfer block to output

fast block read [maxwrds] # faster block transfer routine

broadcast read into <xxx> # used after a broadcast address

Finally, after data transfer the module(s) should be released. The two forms for address/
bus release are,

release

broadcast release

It is often advantageous to execute all four steps in a single fastbus routine call particu-
larly in the user’s trigger routines as the time to address-read/write-release is much
faster. One may use the following read and write constructs to execute this complete
cycle:

read from fastbus_addr

read from fastbus_addr into <xxx>

write <xxx> into fastbus_addr

block read [maxwrds] from fastbus_addr

For example an address to a fastbus modules control space register 1, a read of the regis-
ter into a local variable data, and subsequent release of the module could be done in the
following two ways:

geographic control 15

CODA User’s Manual-9

secondary address 1

read into data

release

Or in a single fastbus call

read from geographic control 15 secondary address 1 into data

CAMAC I/O
CAMAC has a different addressing scheme in which a register in a module is addressed
by a combination of branch number (b), crate number (c), slot number (n), internal
address (a), and function code (f). The function code generally distinguishes between
read, write, and control functions, but may also be used to select between group 0 and
group 1 data space (most modules only support group 0). NOTE: The current imple-
mentation of CODA only supports branch b=0.

camac readout

...

read from b,c,n,a,f # transfer 1 word to output

read from b,c,n,a,f into <xxx> # transfer 1 word to variable

write yyy into b,c,n,a,f # write yyy to module

control b,c,n,a,f # execute control function

CAMAC only supports a single trigger (currently) through a CAMAC lam:

VME I/O
There is limited support for addressing and readout of VME modules in crl. Most mod-
ule access must be done through imbedded c code. However, structures for memory
maps of several commonly used modules at CEBAF have been added to aid the user in
addressing these modules (See Table 8). These structures are defined when the user
specifies vme readout at the top of his readout list code. (See the example trigger
supervisor readout list in Appendix B.)

TABLE 8 Module Description Structure Pointer

Trigger Supervisor Control registers vme_ts *ts

Memory ts_memory[4096] *tsmem

TS Interface card Control registers vme_tir *tir[2]

Lecroy 1190 Dual ported memory vme_dpm *dpm, *dpml

Lecroy 1151 Scaler vme_scal *vscal[32]

TJNAF FIFO Dual ported memory vme_fifo “fifo[2]”

The user should be aware of address modifiers and data transfer modes supported by
their particular slave modules. The default kernel for the MV162 and MV167 boards
used at CEBAF have 4 address spaces defined (Note: this address map is not valid for
the PowerPC PPC604 board from Radstone):

A16/D16 0xffff0000 - 0xffffffff

A24/D16 0xf0000000 - 0xf0ffffff

A24/D32 0xe0000000 - 0xe0ffffff

Readout Controller Configuration File

-10 CODA User’s Manual

A32/D32 sysMemTop - 0xdfffffff

For example the Lecroy 1190 Memory requires certain registers to read and written to
with single word transfers (A24/D16) while the memory can be read via longword
transfers (A24/D32), hence the definition of two pointers (*dpm, *dpml) which can be
defined using the appropriate address modifiers (0xf0xxxxxx and 0xe0xxxxxx).

EVENT I/O
The CODA 2.0 Readout Controller allows a secondary readout list to be downloaded.
Its purpose is to accept events from the primary readout list and perform any user spe-
cific task such as compression, sparsification, or partial analysis. This type of list is
specified by event readout keywords at the top of the file. The Event List is always a
polling list as it will execute its trigger routine only if there is an event on its input queue
(output queue of primary list). The following crl functions are available to Event Lists
only:

get event # get an event from input

copy event # copy event from input to output

$ using a Event pool buffer

pass event # pass an event pointer from input

to output. (fastest)

Normally the user would execute the get event command first in the Event List trigger
routine. This function gets an event from the input queue, and sets the global variables
EVTYPE (the event type i.e. 1-15 for Physics) and EVENT_LENGTH (in number of
longwords). It also sets up an array INPUT[] in which INPUT[0] points to the first data
word of the event. It is left to the user to determine what is to be done with the event. At
a minimum a pass event or copy event must be issued for the event to be passed on to the
ROCs output unchanged. As a non-trivial example, the user could open a new event
buffer and selectively copy data words from INPUT into the new event buffer:

begin trigger eventtrig

variable ii

get event

open event type EVTYPE of BT_UI4

%%

for (ii=0;ii<EVENT_LENGTH;ii++) {

if((INPUT[ii]&0xfff) > 300) /*Check if over pedistal*/

*rol->dabufp++ = INPUT[ii];

}

%%

close event

end trigger

Utility Statements
Arbitrary messages may be sent to the console task, tagged with a severity. This routine
should be used with caution inside event readout lists as they may over run the logger’s
ability to keep up (thereby losing messages and degrading performance). In general
messages should NOT be sent inside the user’s trigger or done routines. The format of
this call is similar to a c printf statement wherein the message string includes embedded
format descriptors. For each format descriptor, the next unused argument is fetched and
formatted according to the descriptor.

log [inform | warn | alarm] “quoted string”,args,...

CODA User’s Manual-11

For example:

log warn “counter value is %d”,counter

%d converts a decimal integer, %x produces hex output; other formats may be found in
any c manual.

A user may make a function call to any routine defined in the readout list that uses the
begin <name>...end <name> structure:

call <name> # call the function <name> (no args)

C.5 Example File

The following is a listing of the configuration of a readout controller which reads out a
single Lecroy 1881 ADC. Triggering is provided by the Trigger supervisor. In the trig-
ger routine, a broadcast address (Sparse Data Scan) is made to determine if the module
has valid data in its buffer. The fastbus routines will be inlined providing approximately
50% faster execution of the trigger routine.

#Example Fastbus readout code for a single Lecroy 1881 ADC

#SFI is being triggered externally

#David Abbott, TJNAF 1996

readout list ADC1

maximum 512,1000

sfi readout

const SFI_ADDR = 0xe0e00000

const ADCSLOT = 16

const SCANMASK = hex 00010000

begin download

 log inform “User Download”

end download

begin prestart

 variable adcid

 reset crate SFI_ADDR

init trig source SFI

link async trig source SFI 1 to mytrig and mytrig_done

event type 1 then read SFI 1

Reset, clear ADC

write hex 40000000 into geographic control ADCSLOT

Program for no sparsification, Gate from FP

Readout Controller Configuration File

-12 CODA User’s Manual

geographic control ADCSLOT

 write hex 00000104

 secondary address 1

 write hex 00000080

 release

READ ADC ID

geographic control ADCSLOT

 read into adcid

release

log inform “ADC ID = %x”, adcid

 log inform “User Prestart Executed”

end prestart

begin end

 log inform “User End Executed”

end end

begin pause

 log inform “User Pause Executed”

end pause

begin go

 log inform “User Go Executed”

end go

begin trigger mytrig

 variable datascan, ii

open event type EVTYPE of BT_UI4

loop until ADC is completed buffering

ii = 0

datascan = 0

 while ((datascan is not equal to SCANMASK) and (ii < 5))

 read from broadcast control 9 into datascan

increment ii

 end while

if ii is less than 5 then

Load next event

 write hex 400 into geographic control ADCSLOT

Read out ADC

block read from geographic data ADCSLOT

else

Output my own header into the data stream

output hex da0100ff

CODA User’s Manual-13

output datascan

end if

close event

end trigger

begin done mytrig

end done

begin done

end done

Readout Controller Configuration File

-14 CODA User’s Manual

