
JEFFERSON LAB

Data Acquisition Group

cMsgUser’sGuide

Version

J E F F E R S O N L A B D A T A A C Q U I S I T I O N G R O U P

cMsg User’s Guide

Elliott Wolin
wolin@jlab.org

Carl Timmer
timmer@jlab.org

22-May-2009

 Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave

Newport News, VA 23606
Phone 757.269.7100 • Fax 757.269.6248

2

Table of Contents

1. Introduction.. Error! Bookmark not defined.

1.1. Asynchronous publish/subscribe messaging.. 4

1.2. Synchronous peer-to-peer messaging.. 5

1.3. Implementation.. 5

2. Messaging Basics.. Error! Bookmark not defined.

3. Domains and Universal Domain Locators .. 8

4. Default Domain Implementations... Error! Bookmark not defined.

4.1. File domain .. Error! Bookmark not defined.

4.2. CA domain.. Error! Bookmark not defined.

4.3. cMsg domain ..11

5. Starting the cMsg Domain Server .. Error! Bookmark not defined.

6. Default Subdomain Implementations... Error! Bookmark not defined.

6.1. LogFile subdomain... Error! Bookmark not defined.

6.2. CA subdomain .. Error! Bookmark not defined.

6.3. Database subdomain .. Error! Bookmark not defined.

6.4. Queue subdomain ...21

6.5. FileQueue subdomain...21

6.6. SmartSockets subdomain ..21

6.7. TcpServer subdomain ...22

6.8. cMsg subdomain...22

7. Utilities and Example Programs...26

7.1. cMsgLogger..26

7.2. cMsgQueue...26

7.3. cMsgGateway ...27

7.4. cMsgCAGateway ..28

7.5. cMsgAlarmServer ...28

7.6. cMsgCommand...29

7.7. cMsgReceive...29

7.8. Example programs ...30

8. Client and Server Control and Monitoring ...31

3

9. Java Tutorial .. Error! Bookmark not defined.

10. C Tutorial ... Error! Bookmark not defined.

11. C++ Tutorial... Error! Bookmark not defined.

A. Getting and Installing cMsg..45

1) Getting cMsg ...45

2) Installing the Java version ..47

3) Installing the C/C++ version ..48

B. Revision History ...49

C. Contact Information ..50

INTRODUCTION

4

1. Introduction

The cMsg package is designed to provide client programs with a uniform interface to an
underlying messaging system via an API powerful enough to encompass asynchronous
publish/subscribe and synchronous peer-to-peer messaging. The advantage of using the
cMsg API is that client programs need not change if the underlying messaging system is
modified or replaced.

But cMsg provides much more than a simple API. The package includes a number of
built-in messaging systems, including a complete, stand-alone, asynchronous
publish/subscribe and synchronous peer-to-peer messaging system, as well as a persistent
network queuing system. Although cMsg is highly customizable and extendable, most
users will simply use one of the built-in messaging systems. In addition, a number of
useful utilities and examples are provided.

If you are familiar with the publish/subscribe and peer-to-peer paradigms and want to
jump right in and learn how to use the cMsg package, skip to the tutorial sections or look
at the example programs, and refer back to the next few sections as needed.
The cMsg package can be used at a number of levels, i.e. as an:

 Abstract API to an arbitrary, underlying message system
 Framework for implementation of underlying messaging systems
 Proxy system to connect to remote messaging systems
 Full implementation of publish/subscribe and other messaging systems

The first three levels are primarily of interest to cMsg developers (see the cMsg
Developer’s Guide). In the rest of this document we describe how to use the built-in
messaging systems.

1.1. Asynchronous publish/subscribe messaging

The publish/subscribe messaging paradigm is quite powerful, and is commonly used in
business and industry. Briefly, in a publish/subscribe system producers publish messages
to abstract subjects, and consumers subscribe to subjects they are interested in. A
message published to a subject may be delivered to any number of consumers (one-to-
many messaging). A client can be both a producer and consumer of messages.

Section

INTRODUCTION

5

Producers do not know nor care if any clients are subscribed to the subjects they publish
to, and consumers neither know nor care about the producers who publish to the subjects
they subscribe to.

Note that an additional message field, “type”, plays a similar role as the subject field
described above.

1.2. Synchronous peer-to-peer messaging

Publish/subscribe messaging is asynchronous in that neither producer nor consumer know
about each other’s existence. The cMsg API also includes a number of synchronous
messaging mechanisms, in which there is some level of direct communication between
the producer and consumer of a message. These range from simple status notifications,
which may provide only partial information concerning the status of the
producer/consumer transaction, to direct, end-to-end communication between a single
producer and a single consumer.

1.3. Implementation

cMsg clients can be written in Java (1.5 or higher) on Unix (Linux, Solaris, MacOS X)
and Windows, and in C/C++ on Unix and VxWorks. We provide Javadocs and Doxygen
docs to document the full Java and C/C++ client API. Note for developers: cMsg
domains can be written in C or Java, but subdomains only in Java.

1.4. Domains

One term that will be used constantly through this manual is “domain”. In the full
implementation of pub/sub and other messaging systems that we are now describing, the
cMsg API is actually a top layer which provides multiplexing between different
underlying communication systems. Each of these underlying communication systems is
referred to as a “domain”. The domain which includes the full pub/sub implementation
we call the cMsg domain. Other domains exists which, for example, talk to EPICS
channel access or write messages to a file for archiving

MESSAGING BASICS

6

2. Messaging Basics

The one thing that ties together all messaging systems under a single umbrella (besides
the top layer API) is the type of messages sent between cMsg users. These messages are
containers that hold a number of user and system settable fields. The cMsg system itself
takes care of setting many fields, including sender, senderHost, senderTime, receiver,
receiverHost, receiverTime. In fact, a history can be kept in each message of where it has
been.

2.1. Settable fields

For the user there are two types of settable fields. The first type of field is limited in
number but efficiently handled. This consists of the subject and type fields (strings)
which are used to determine who receives the message and also the text (string),
byteArray, userInt (32 bit integer), and userTime (64 bit integer) fields. The second type
is contained in a “payload” which (though handled less efficiently than the first type) can
contain any number of any type of int, float, double, strings, cMsg messages, binary
arrays, and arrays of any of these types. This allows tremendous flexibility. After the
fields are set, the message can be published. A message can be published many times,
and user fields can be modified in between as desired.

Note that the ability for a message to carry other messages as part of its load allows for
some interesting possibilities. One such possibility is storing/archiving and restoration of
stored/archived messages. Also note that the cMsg system uses the payload to store
message metadata. It reserves all payload items whose names begin with the string
“cmsg” for itself. For example, the history of a message’s sender name, send time, and
send host are stored in the payload fields called cMsgSenderNameHistory,
cMsgSenderHostHistory, and cMsgSenderTimeHistory.

There are too many methods/routines that modify messages to list them all here. View the
API documentation in either the javadocs or doxygen docs to see the whole list and get an
explanation of each.

2.2. Matching with subscriptions

Section

MESSAGING BASICS

7

In all cases, the subject and type fields determine how messages are delivered.
Consumers can subscribe to any number of subject/type combinations, and must provide
a callback for each (callbacks need not be unique). For those unfamiliar with the term, a
callback is a function (C) or an object’s method (Java/C++) that is called when a message
matching the subscription’s subject and type arrives at the client. The message is passed
in as a parameter to the function/method.

In the cMsg (pub/sub) domain, the wildcard characters “*”, “?”, and “#” are allowed in
subscriptions’ subject and type, where “*” matches any number of characters, “?”
matches a single character, and “#” matches one or no positive integer. Also wildcard
constructs like {i>5 | i=4} can be used to match a range of positive integers which meet
the conditions in the parentheses. The logic symbols >, <, =, |, & are allowed along with
the letter i, any positive integers, and spaces. As an example, a subscription to the subject
abc{i>22 & i<26} will match a message with the subjects abc23, abc24, and abc25.

The start() method enables delivery of messages to the callbacks, and the stop() method
stops delivery. If delivery is not enabled, messages will be lost to the client. A single
message may be delivered to many callbacks in a single client. Note that if a client
subscribes to a subject/type and then publishes to the same subject/type, it will receive
the message it published.

2.3. XML

A message may be converted into an XML string. In the Java implementation, the various
toString methods do this and the capability to form a message object from an XML string
exists as well. In C/C++ only the ability to convert the message into a string exists. There
is some control over whether binary is converted, a compact form is used, or if message
metadata is made visible.

DOMAINS AND UNIVERSAL DOMAIN LOCATORS

8

3. Domains and Universal Domain Locators

Fundamental to cMsg is the notion of a domain, or messaging space. The cMsg API is
actually a top layer which provides multiplexing between different underlying
communication systems. Each of these underlying communication systems is referred to
as a “domain”. Clients can connect to one or more domains, but subscriptions and
messaging activity generally are specific to individual domains. I.e. a publication or
subscription in one domain normally has no effect in any other domain. Note that
although inter-domain communication in general is not supported, the cMsg gateway
utility can bridge domains under certain circumstances. Also, user-written domains may
implement inter-domain communication.

Domains are specified via a Universal Domain Locator or UDL. When connecting to a
domain, clients supply three pieces of information: the client name, which often needs to
be unique (depending on the domain type); a short client description; and the UDL. In
analogy with http and other resource locators, the general form of a UDL is:

cMsg:domainName://domainInfo?dpar1=val1&dpar2=val2...

where the leading cMsg (optional) refers to the cMsg package, domainName identifies
the domain, and domainInfo is interpreted by the domain. The optional parameters are
domain-specific, and any number of them may be specified. Note that the leading cMsg
along with the domainName are NOT case sensitive.

Section

CMSG API

9

4. cMsg API

There are a handful of methods/functions that do the main work in cMsg. This interface
plus the message-manipulating methods are what the user mainly works with. The
following table contains a simplified, generic form of the client API (since the Java and
C, and C++ versions have slightly different syntax and differ in the number of methods):

Generic cMsg API
API Call Description

connect(UDL, description, name) Connect to cMsg system specified by UDL for
client “name”

reconnect() Reconnect to cMsg system
disconnect() Disconnect from cMsg system
isConnected() Is client connected to cMsg system?
send(msg) Send message asynchronously
flush(timeout) Flush messages sent from client
syncSend(msg, timeout) Send message and wait for cMsg system response
sendAndGet(msg, timeout) Send message and synchronously wait for

receiving client to send directed response
subscribe(subject, type, callback, userArg) Subscribe to messages of given subject & type,

registering callback for incoming messages
unsubscribe(sub) Remove subscription
subscribeAndGet(subject, type, timeout) Subscribe to subject & type and synchronously

wait for one such message
start() Start receiving messages
stop() Stop receiving messages
monitor(command) Synchronous call to request monitoring data
shutdownClients(clients) Command certain clients to shutdown
shutdownServers(servers) Command certain servers to shutdown
setShutdownHandler(handler) Install a shutdown handler
subscriptionPause(sub) Pause message delivery to callback
subscriptionResume(sub) Resume message delivery to callback
subscriptionQueueClear(sub) Clear subscription’s message queue
subscriptionQueueCount(sub) Number of messages in subscription’s queue
subscriptionQueueIsFull(sub) Is subscription’s message queue full?
subscriptionMessagesTotal(sub) Number of messages delivered to callback
setUDL(udl) Reset the UDL for use with reconnect or failover
getCurrentUDL() Gets the current UDL

Section

CMSG API

10

This API contains a number of synchronous functions (syncSend, subscribeAndGet,
sendAndGet) simply for the convenience of the user, as each could be constructed from
sends and subscribes. The function sendAndGet requires a more detailed explanation. It
sends a message in a normal manner while marking it as having been sent by a call to the
sendAndGet function. A receiver of that message can then construct a special response
that will directed back to the original sender (regardless of its subject and type).

An important detail to keep in mind is that this API may function differently depending
on the particulars of each domain’s implementation. For example, in one domain “flush”
can mean that messages are kept in a buffer until the flush command is issued. In another,
however, flush may do nothing as messages are sent immediately during the “send”
command. Of course, simply providing an API is of little practical use which is why
cMsg contains a single implementation of great flexibility.

AVAILABLE DOMAIN IMPLEMENTATIONS

11

5. Available Domain Implementations

A number of domains are implemented by default in the cMsg package. The most
important is the cMsg domain, which implements a full publish/subscribe and peer-to-
peer messaging system in one of its subdomains (see below). Note that calls to API
functions not supported by a given domain return a “Not Implemented” error (or throw an
exception). Developers can easily implement additional Java and/or C domains.

5.1. File Domain

The File domain implements simple logging of messages to a local file, and the form of
the UDL is:

cMsg:File://fileName?textOnly=booleanVal

where fileName specifies the name of a file locally accessible to the client, and the file is
opened in append mode. By default the entire message is logged to the file as an XML
fragment. If textOnly=true is specified only a timestamp and the text field is logged.
Only the send() and syncSend() messaging API functions are supported. Client names
need not be unique in this domain.

5.2. CA Domain

The CA domain implements a simple interface to EPICS Channel Access, similar to the
EZCA package, and the form of the UDL is:

cMsg:CA://channelName?addr_list=list

where addr_list specifies the UDP broadcast address list. Supported messaging API
functions are send(), which implements a CA put; flush(); subscribeAndGet() which gets
the channel value one time and the timeout is in milliseconds; subscribe(), which
implements CA “monitor on”; and unsubscribe, which implements “monitor off”.
Callbacks are executed in their own threads.

Section

AVAILABLE DOMAIN IMPLEMENTATIONS

12

Currently access is only supported for dbl values, and the dbl resides in the text field as a
string. Also, the CA domain is currently only implemented for Java clients. Client
names need not be unique in this domain.

5.3. RC domain

Run control communication is implemented in this domain. This domain is used when the
user wishes to create a CODA component -- a component aware of all the CODA state
transitions. In order to be informed of the transitions, the correct subscriptions must be
made in order to receive the appropriate messages. A full treatment of this topic is
beyond the scope of this little user guide, so anyone interested in doing this should
contact Vardan Gyurjyan. This section on the rc domain is included merely to inform
users that this capability is available. For completeness, the UDL is of the form:

cMsg:rc://<host>:<port>/<expid>?multicastTO=<timeout>&connectTO=<timeout>

where 1) port is optional with a default of 45200, 2) host is required and may be
“multicast”, "localhost" or in dotted decimal form, 3) the experiment id or expid is
required and does NOT default to the environmental variable EXPID, 4) multicastTO is
the time to wait in seconds before connect returns a timeout when a rc multicast server
does not answer, 5) connectTO is the time to wait in seconds before connect returns a
timeout while waiting for the rc server to send a concluding connect message.

5.4. cMsg domain

5.4.1. Server communication

The cMsg domain involves use of a proxy server whereby client requests are not handled
in the client itself, but instead are forwarded to a remote cMsg server that actually
performs the work on behalf of the client. Communication between client and server is
handled transparently so the user does not know that a server is involved. The server
passes the client’s request on to a subdomain (a handler object existing in the server). A
cMsg server has many subdomain types to choose from and more can easily be added by
a developer. Each subdomain handles the client requests in a particular way. Currently
the cMsg domain has cMsg, Channel Access, database, queue, file queue, log file,
SmartSockets, and Tcpserver subdomains which are described in the next section. This
arrangement works well on VxWorks. Underlying messaging systems that are not
available on VxWorks can be accessed from there via a server running on a remote Unix
node.

The general form of the cMsg domain UDL is:

cMsg:cMsg://host:port/subdomain/subdomainInfo?tag1=val1&tag2=val2…

AVAILABLE DOMAIN IMPLEMENTATIONS

13

For the host parameter, the user may supply a host name or set it to be “multicast” or
“localhost”. If it is set to “localhost”, it resolves to the name of the host running the
client. If it is set to “multicast”, then the client does a multicast to find the server using
the multicast address of 239.220.0.0. Of course, the user may specify a multicast address
in dotted decimal form as well. The port used is the one given, or if nothing is given the
defaults for both multicasting and TCP connections are 45000. If multicasting is used, the
first cMsg server to respond is chosen. If this is not the desired behavior, just make sure
your server is running at a unique multicast address and/or a unique port.

The subdomain parameter specifies a particular subdomain implementation, and
subdomainInfo is interpreted by the subdomain as are the subdomain parameters. Some
of the peculiarities of this UDL include being able to leave off the initial “cMsg” and if
the subdomain is missing it will default to the cMsg subdomain. There are three tags that
can be used in all subdomains:

Tag Name Description

cmsgpassword This is the password needed to connect to the server.

multicastTO This is the timeout in seconds to wait for server responses to
multicasting.

regime It may be “low”, “medium”, or “high” and defaults to “medium”.
This refers to the expected data rate from the client. It’s a hint to
the server how best to handle this client. The “high” specification
is best used by experts. “Low” is for clients sending normal size
messages less than 10Hz or so.

Clients can chose to send messages to the server using either TCP or UDP. This is done
by setting a field in the message to be sent. If using a C client, the UDP send is roughly
twice as fast as the TCP. In Java there is little difference, but see the API for details. The
call to flush() does nothing in the cMsg domain.

Clients using the cMsg domain have the capability to failover to another server when the
server they are connected to dies. To use this feature simply supply a semicolon
separated list of UDLs in place of a single UDL when connecting to the server. If the
client cannot connect to the first UDL on the list, the next is tried and so on until a valid
connection is made.

If the server should die during the sending or receipt of messages, the software will try to
connect to a UDL on the list and continue on. Any subscriptions are propagated to the
new server. Of course, a client who has a subscription will potentially miss messages
sent during the brief time it is not connected. Take note that any syncSend(),
subscribeAndGet() or sendAndGet() calls will NOT failover, only send(), subscribe(),
and unsubscribe() will failover.

The semicolon separated list of UDLs should place the preferred UDL(s) first since it will
be given higher priority. If a client is connected to a UDL which is not first in the list and

AVAILABLE DOMAIN IMPLEMENTATIONS

14

that connection fails, the software will attempt to establish a connection starting with the
first UDL on the list and work its way from there (skipping over the UDL that just
failed).

A slight variation on the idea of failing over is that of reconnection. Reconnections are
possible in the cMsg domain, meaning that all subscriptions (but not the synchronous
syncSend, sendAndGet, subscribeAndGet) are maintained through a client’s connection
to the server being broken and reestablished. For example, if a client only specifies one
UDL (and thus will not failover), and the connection to the server has been broken and
disconnect has not been called, the user can call connect() again (reconnect() if using C)
to reestablish the connection.

Similarly, if a client has a good connection, the user can force a reconnection to another
server. To keep subscriptions and switch to another server, the user can reset the UDL by
calling setUDL() and then simply call connect() again. This attempts to make a
connection starting with the first UDL of the new list. If a connection to another server
already exists, it will be terminated before the new one is made.

5.4.2. Client subscriptions

There are a number of callback issues users should be aware of when using this domain.
All subscription callbacks are run in their own thread with their own messages queues.
Thus, use thread-safe programming practices when writing callbacks by either not using
shared global resources or by protecting them with mutexes. Also each callback gets
delivered a copy of the message arriving at the client, so there is no issue of callbacks
interfering with each other by sharing messages.

Since it is possible to have different subscriptions using the same callback, thread-safe
coding must be used in such circumstances. It is also possible to have a single callback
run in multiple threads by proper configuration of a single subscription. In this case, if the
message queue for the subscription begins to fill up, additional threads are started to
process messages using the same callback. The above warning about writing a thread-
safe callback applies here too.

If the user writes a callback which is designed to accept all matching messages serially, it
must be able to “keep up” with the rate of messages arriving in its queue. What happens
when that’s not the case? Well, TCP provides a back pressure mechanism which will
eventually stop message producers from producing any more. The exact chain of events
is that once the callback queue is full, the receiving client’s TCP buffer will fill up. Once
that is full, the cMsg server will not be able to send any more messages to that particular
client. Thus the threads in the server sending to this client will block. That may mean that
queues of messages (waiting to be sent) in the server fill up which, in turn, may mean that
some of the server’s TCP buffers fill up. And finally, message producing clients may not
be able to send to the server any more due to those full TCP buffers. If the producing

AVAILABLE DOMAIN IMPLEMENTATIONS

15

client is sending messages using UDP, they will simply be dropped (lost). This is a very
unlikely scenario but can actually happen.

The way to avoid this problem is to either produce messages at a reasonable rate, make
sure the callback does not take an excessive amount of time to run, configure the callback
to automatically delete old messages from its queue when the queue fills up, or configure
the callback to be run in multiple threads.

There are method/function calls that the user can make to see if a callback’s queue is full,
see how many messages are in it, or to completely clear the queue. The user may also
pause the callback, resume its operation, and find out how many messages in total have
been passed to it.

STARTING THE CMSG DOMAIN SERVER

16

6. Starting the cMsg Domain Server

You must run a cMsg server if you want to connect to the cMsg domain and its
subdomains. The server is not needed for the other domains. There are many options
some of which require specialized knowledge of how the server(s) work.
The cMsg domain server requires Java 1.5 or later and will produce the following output
if run “java –server org.jlab.coda.cMsg.cMsgDomain.server.cMsgNameServer –h” :

Usage: java [-Dport=<tcp listening port>]
 [-DdomainPort=<domain server listening port>]
 [-Dudp=<udp listening port>]
 [-DsubdomainName=<className>]
 [-Dserver=<hostname:serverport>]
 [-Ddebug=<level>]
 [-Dstandalone]
 [-Dpassword=<password>]
 [-Dcloudpassword=<password>]
 [-DlowRegimeSize=<size>] cMsgNameServer

port is the TCP port this server listens on
domainPort is the TCP port this server listens on for connection to

 domain server
udp is the UDP port this server listens on for multicasts
subdomainName is the name of a subdomain and className is the name of the
 java class used to implement the subdomain
server punctuation (not colon) or white space separated list of
 servers in host:port format to connect to in order to gain
 entry to cloud of servers. First successful connection used.
 If no connections made, no error indicated.
debug debug output level has acceptable values of:

 info for full output
 warn for severity of warning or greater
 error for severity of error or greater
 severe for severity of "cannot go on"
 none for no debug output (default)
standalone means no other servers may connect or vice versa,
 is incompatible with "server" option
password is used to block clients without this password in their UDL's
cloudpassword is used to join a password-protected cloud or to allow
 servers with this password to join this cloud
lowRegimeSize for clients of "regime=low" type, this sets the number of
 clients serviced by a single thread

Section

STARTING THE CMSG DOMAIN SERVER

17

6.1. Port Numbers
Starting off with the simplest of options, the default TCP listening port is 45000 but may
be set with the “port” option. For a connecting client, be sure to specify that port number
in your client’s UDL if you use this option and are not using the default. Similarly the
udp listening port (default 45000) can be specified with the “udp” option. Without going
into too much detail, this server has another server within. Two connections are made to
this interior server, and its TCP listening port may be set with the “domainPort” option
(defaults to 45100). Note that multiple cMsg servers on the same node must use different
ports for each of these options.

6.2. Subdomains
Developers can easily implement additional subdomains in Java 1.5 or higher. One can
use a subdomain that is not built in without too much trouble. When starting up the
server, add the following option, “-D<subdomainName>=<className>” where
subdomainName is the case insensitive name of the subdomain of interest and className
is the name of the Java class implementing the subdomain. When the server starts up and
the client connects to it, it first checks to see if the subdomain given by the client’s UDL
matches the above option’s subdomain name. If there is no such flag, the environmental
variable “CMSG_SUBDOMAIN” is checked to see if it contains the name of the Java
class implementing the subdomain. If not, it tries to find the subdomain in the list of
those that are built in. More on subdomains can be found in the developer’s guide.

6.3. Passwords
The password option is used not so much as a security measure but simply to avoid
confusion by isolating servers from each other. Servers that set the password will allow
only clients that specify the password to connect. The end of the client’s UDL must
contain the string “?cmsgpassword=<password>” if it’s the first option parameter or the
string “&cmsgpassword=<password>” if it’s not the first. The cmsgpassword string is
case insensitive.

Some of the options are specific to the cMsg subdomain only. These include –Dserver,
-Dstandalone, and –Dcloudpassword. These will be explained in the chapter on the cMsg
subdomain.

6.4. Clouds
cMsg servers can be grouped or connected into clouds (note: this has nothing to do with
cloud computing). In these clouds, clients of a server in a particular cloud can send and
receive messages transparently with clients of other servers in the same cloud. The
purpose of this is both to load balance and to distribute computing resources. In principle
there is no reason why all clients couldn’t be using the same server. In practice it might
be nice to have clients and their server all on the same node for performance reasons. It
might also be nice to occasionally talk to other, remote clients. By having servers join

Server
clouds

STARTING THE CMSG DOMAIN SERVER

18

together as part of the same cloud, most of the message traffic can remain local while the
occasional message may be sent to or received from a remote client.

To join another cMsg server as part of a cloud, just specify the:

–Dserver=host1:port1;host2:port2;hostN:portN

option when starting up. The listed host/port combinations may be separated by white
space or by any punctuation (except a colon). If white space is used, the whole string will
need to be quoted:

-Dserver=”myhost:33555 yourhost:44555 theirhost:22233”

The server being started will try to connect to one of the listed servers starting with the
first (left most) and moving to the end (right most). It stops at the first connection made.
Once it connects to a single server, it asks that server which other servers it is connected
to and connects to those as well. Thus, in a cloud, each server is connected to all of the
other servers. These “connections” are nothing more than each server acting as a cMsg
client to each of the other servers. I hope that’s not too confusing.

The first server in a cloud may specify a password that it expects joining servers to know.
That password is given in the:

-Dcloudpassword=<password>

option. This feature is not meant for security but only to avoid having extraneous servers
join random clouds (i.e. for organization).

If a server does not want other servers to join with him (her?) to form a cloud, it needs to
be started with the –Dstandalone option.

6.5. Client throughput regime
Last but not least, let me add a word here on the -DlowRegimeSize flag. In order to make
a server perform better when serving large numbers (100’s to 1000’s) of clients, having
clients specifying “regime=low” in their UDLs can greatly help. What this tells the server
is that “hey, I’m a client that makes few demands” and so the server diverts fewer
resources to that client. For any client that sends and receives normal size messages at no
more than 10-20 Hz, it would help to use “regime=low”. Inside the server, a single thread
will service several of these low regime clients by use of the “select” statement or at least
its Java equivalent. The –DlowRegimeSize flag sets how many clients are served by such
a single thread. It defaults to 20.

For example, if one server has 3000 such clients and the lowRegimeSize is set to 30, then
only 100 threads are needed to handle all the clients and everything should work fine. On
the other hand, if these clients do not specify “regime=low” in their UDLs, then 3000

STARTING THE CMSG DOMAIN SERVER

19

threads would be needed on the server to handle them all. This bogs the server down and
will cause it to run out of resources such as file descriptors.

STARTING THE CMSG DOMAIN SERVER

20

7. Available Subdomain Implementations

A number of subdomains are implemented in the cMsg server, including the cMsg
subdomain, which implements a complete asynchronous publish/subscribe and
synchronous peer-to-peer system (see below).

7.1. LogFile subdomain
The LogFile subdomain is similar to the File domain, except that the cMsg server
performs the logging. Thus multiple clients can log to the same file, whereas in the File
domain the file is unique to the client. Only the send() and syncSend() messaging
functions are supported. The general form of the LogFile subdomain UDL is:

cMsg:cMsg://host:port/LogFile/filename

where fileName is the name of the logging file used by the server. Messages are logged
as XML fragments. Client names need not be unique in this subdomain.

7.2. CA subdomain
The CA subdomain is similar to the CA domain, but again the cMsg server actually
executes the CA library commands, not the client. Only the send(), syncSend(),
subscribe(), unSubscribe(), and subscribeAndGet() messaging functions are supported.
The general form of the CA subdomain UDL is:

cMsg:cMsg://host:port/CA/channelName?addr_list=list

where addr_list specifies the UDP broadcast address list. Client names need not be
unique in this subdomain.

7.3. Database subdomain
In the Database subdomain the cMsg server connects to a database and executes the SQL
statement appearing in the text field of a message. Currently SQL queries that return data
are not supported (e.g. select). Only the send() and syncSend() messaging functions are
supported. The general form of the Database subdomain UDL is:

cMsg:cMsg://host:port/Database?driver=myDriver&url=myURL&

Section

STARTING THE CMSG DOMAIN SERVER

21

 account=myAccount&password=myPassword

where myDriver is the JDBC driver to use to connect to the database, myURL is the
JDBC URL of the database, and optional myAccount and myPassword may be required
by the database. Client names need not be unique in this subdomain.

7.4. Queue subdomain
The Queue subdomain implements network-accessible persistent message queues via a
JDBC-accessible database. Clients can post messages to the queue via send() or
syncSend(), and retrieve messages from the head of the queue via sendAndGet(). The
general form of the queue subdomain UDL is:

cMsg:cMsg://host:port/Queue/queueName?driver=myDriver&
 url=myURL&account=myAccount&password=myPassword

where queueName identifies the queue, myDriver is the JDBC driver to use to connect to
the database, myURL is the JDBC URL of the database, and optional myAccount and
myPassword may be required by the database.

Note that tables are created in the database by the cMsg server to implement the queue.
Also, client names need not be unique in this subdomain.

7.5. FileQueue subdomain
The FileQueue subdomain is identical to the queue subdomain except that the message
queue is stored in files rather than in a table in a database. This results in lowered
performance, but of course no database is needed. If multiple cMsg servers will access
the same FileQueue then the file system on which the queue files reside must support
Java 1.5-compatible file locking. Only the send(), syncSend(), and sendAndGet()
messaging functions are supported. The general form of the FileQueue subdomain UDL
is:

cMsg:cMsg://host:port/FileQueue/queueName?dir=myDir

where queueName identifies the queue, and optional myDir specifies the directory in
which to store the queue files (default is the current working directory of the cMsg
server).

Note that many files are created by the cMsg server to implement the queue, so choose
the queue directory carefully. Also, a single directory can support multiple file queues.
Client names need not be unique in this subdomain.

7.6. SmartSockets subdomain
The SmartSockets subdomain provides a gateway to the SmartSockets (commercial)
publish/subscribe interprocess communication package. Only send(), subscribe(), and

STARTING THE CMSG DOMAIN SERVER

22

unsubscribe() messaging functions are supported. The general form of the SmartSockets
subdomain UDL is:

cMsg:cMsg://host:port/SmartSockets/projectName

where projectName identifies the SmartSockets project.

Note that since in SmartSockets the messaging system is implemented by a “cloud” of
interconnected servers, inter-domain messaging is possible if domains connect to
SmartSockets servers within the same cloud. Client names must be unique in this
subdomain.

7.7. TcpServer subdomain
The TcpServer subdomain provides access to tcpsever processes running on VxWorks or
Unix processors (tcpserver is part of the CODA data acquisition package at JLab). Only
the sendAndGet() messaging function is supported, and communication with the
tcpserver is stateless. Commands placed in the request message text field are forwarded
to the tcpserver for execution, and the resulting output is returned in the text field of the
response message. The general form of the tcpserver subdomain UDL is:

cMsg:cMsg://host:port/TcpServer/srvHost:srvPort

where srvHost and srvPort refer to the host name and port where the tcpserver process is
running. Client names need not be unique in this subdomain.

7.8. cMsg subdomain
The cMsg subdomain implements a complete asynchronous publish/subscribe and
synchronous peer-to-peer interprocess communication package. All cMsg messaging API
functions are supported. Inter-server communication is supported. The general form of
the cMsg subdomain UDL is:

cMsg:cMsg://host:port/cMsg/namespace/?tag=value&tag2=value2 ...

For the host parameter, the user may supply a host name or set it to be “multicast” or
“localhost”. If it is set to “localhost”, it resolves to the name of the host running the
client. If it is set to “multicast”, then the client does a multicast to find a server on an
unknown host using the multicast address of 239.220.0.0. Of course, the user may specify
a multicast address in dotted decimal form as well. The port used is the one given, or if
nothing is given the defaults for both multicasting and TCP connections are 45000. If
multicasting is used, the first cMsg server to respond is chosen. If this is not the desired
behavior, just make sure your server is running at a unique multicast address and/or a
unique port.

The optional namespace parameter identifies a messaging namespace. A namespace may
consist only of ASCII word characters [a-zA-Z0-9_], and if not supplied a default

STARTING THE CMSG DOMAIN SERVER

23

namespace is used (defaultNamespace). Client names must be unique in the given
namespace. Messages do not cross namespaces. Thus, a client who subscribes to a
subject/type in a particular namespace will only be able to receive messages from a
producing client in that same namespace. There are a number of tags that can be used:

Tag Name Description

cmsgpassword This is the password needed to connect to the server. Valid for all
cMsg subdomains

multicastTO This is the timeout in seconds to wait for server responses to
multicasting. Valid for all cMsg subdomains.

regime It may be “low”, “medium”, or “high” and defaults to “medium”.
This refers to the expected data rate from the client. It’s a hint to
the server how best to handle this client. The “high” specification
is best used by experts. “Low” is for clients sending normal size
messages less than 10Hz or so. Valid for all cMsg subdomains.

failover It may be “cloud”, “cloudonly”, or “any” and defaults to “any”.
This specifies the manner in which to failover from one server to
another. If set to “any”, failover of client can go to any of the
UDLs given in the argument to connect(). If set to “cloud”, failover
will go to servers in the cloud first, and if none are available, then
go to any of the UDLs given to connect(). If set to “cloudonly”,
failover will only go to servers in the cloud. Valid for the cMsg
subdomain only. More on this below.

cloud It may be “local” or “any” and defaults to “any”. This specifies the
manner in which to failover to a cloud. If set to “any”, failover of
client to a server in the cloud will go to any of the cloud servers. If
set to “local”, failover of client to a server in the cloud will go to a
local cloud server first before others are considered. Valid for the
cMsg subdomain only. More on this below.

Some of the peculiarities of this UDL include being able to leave off the initial “cMsg
and if the subdomain is missing it will default to the cMsg subdomain.

7.8.1. Servers
The cMsg subdomain is the most complex of all the subdomains. Let’s start out by
describing the servers and how they connect together (see also section 6.4). cMsg servers
may be connected together into what is called a cloud. This cloud is only meaningful to
clients which use the cMsg subdomain. A client of one of the servers in a cloud can
subscribe to messages produced by any client connected to any server in that cloud within
the cMsg subdomain. Similarly a message-producing client can sent to any subscribers in
the cloud if it is connected to one of the cloud servers.

To get servers to connect to each other, the “–Dserver=<hostname:serverport>” option
must be given to the JVM when starting up all except the first server. In the other words,

Server
clouds

STARTING THE CMSG DOMAIN SERVER

24

the first server is started up normally. A second (connecting) server must be started with
the above option giving the host and port of the first server as described. Any subsequent
servers joining the cloud must also use the above option giving the host and port of any
one of the servers already in the cloud.

For example, let’s say that we start up a server on the host “hal” on port 45001:

Java –server org.jlab.coda.cMsg.cMsgDomain.server.cMsgNameServer

Then the second server would be started like:

Java –server –Dserver=hal:45001 org.jlab.coda.cMsg.cMsgDomain.server.cMsgNameServer

It may be that the first server does not want any one joining him and forming a cloud. In
that case the first server would start up with the flag “–Dstandalone” and all joiners
would be rejected.

It is also possible to protect a cloud from having just anyone join. A password can be
instituted by having the first server start up with the “-Dcloudpassword=<password>”
option. If the password were set to say … abracadabra, then we would type the following
at the command line:

Java –server –Dcloudpassword=abracadabra ... cMsgNameServer

Any server which wanted to join that server to make a cloud must have the same option
given. All others will be refused.

7.8.2. Clients
Clients using the cMsg subdomain have the capability to failover to another server when
the server they are connected to dies. To use this feature simply supply a semicolon
separated list of UDLs in place of a single UDL when connecting to the server. If the
client cannot connect to the first UDL on the list, the next is tried and so on until a valid
connection is made.

If the server should die during the sending or receipt of messages, the software will try to
connect to a UDL on the list and continue on. Any subscriptions are propagated to the
new server. Of course, a client who has a subscription will potentially miss messages
sent during the brief time it is not connected. Take note that any subscribeAndGet() or
sendAndGet() calls will NOT failover, only send(), syncSend(), subscribe(), and
unsubscribe() will failover.

The semicolon separated list of UDLs should place the preferred UDL(s) first since it will
be given higher priority. If a client is connected to a UDL which is not first in the list and
that connection fails, the software will attempt to establish a connection starting with the
first UDL on the list and work its way from there.

STARTING THE CMSG DOMAIN SERVER

25

Some of the additional details of failing over are controlled by the tags given in the UDLs
used in connecting (see the table above). Each UDL may specify one of its tag/val pairs
as “failover=cloud” which allows failing over to the cloud (if the server is a member of
one). As long as there is a viable server in the cloud, failovers will only happen to servers
in that cloud (as long as they both shall live). If, on the other hand, there are no other
servers in the cloud, failovers will continue to the next UDL in the list originally given
while connecting. Again, if the client was not at the head of that list at the time of failure,
the first UDL is tried again, and the software makes its way down the list from there (but
skipping the failed UDL). If the tag/val is specified as “failover=cloudonly”, failovers
will only happen to servers in the same cloud. If no other servers exist in that cloud, the
client’s connection is broken for good – no more failovers. Finally, if the user specifies
“failover=any”, then the client works its way down the UDL list. If a particular UDL in
that list specifies “failover=cloud”, then that’s what happens. If it specifies
“failover=cloudonly”, that’s what happens from there.

Wait! There are other complications in failovers to take note of. The tag/val pair of
“cloud=any” specifies that if failing over to a server in the cloud, it may choose any
member of that cloud. However, the tag/val pair of “cloud=local” means that failover will
first go to a server in that cloud running on the same host as the client. If there are no
local servers available, failover will happen to a remote server.

Let me add a final word here on tag/val pairs which involve the performance of both
clients and servers. In order to make the server perform better when serving large
numbers (100’s to 1000’s) of clients, specifying “regime=low” can greatly help
performance of the server (and therefore all the attached clients as well). What this tells
the server is that “hey, I’m a client that makes few demands” and so the server diverts
fewer resources to that client. For any client that sends and receives normal size messages
at no more than 10-20 Hz, it would help to use “regime=low”.

UTILITIES AND EXAMPLE PROGRAMS

26

8. Utilities and Example Programs

A number of general purpose utility applications are provided. These are fairly simple
programs, and may easily be customized. Java utilities require Java 1.5 or higher.

8.1. cMsgLogger

The cMsgLogger logs messages that match subject/type to the screen, a file, and/or a
database. Similar functionality exists in the File domain, and in the LogFile and Queue
subdomains:

$ java org.jlab.coda.cMsg.apps.cMsgLogger -h
Usage:
java cMsgLogger [-name name] [-descr description] [-udl domain]

 [-subject subject] [-type type]
 [-screen] [-file filename]
 [-url url] [-table table] [-driver driver] [-account account]

 [-pwd password]
 [-debug] [-verbose]

where udl is required, subject and type default to * and *, and display to the screen is
default. url is a JDBC url, table is the name of the table to use, and driver, account, and
password are used when connecting to the database.

8.2. cMsgQueue

The cMsgQueue utility queues messages to either a database or file-based queuing
system, same as the Queue and FileQueue subdomains. Some differences are that in the
Queue and FileQueue subdomains all messages are queued, whereas here only messages
that match subject/type, specified on the cMsgLogger command line, get queued. Also,
here only the creator and user-settable fields are queued, whereas all fields are stored in
the two subdomains. Finally, in the subdomains the cMsg server does the work, whereas
here the cMsgQueue application does the work.

Clients retrieve from the queue by executing the sendAndGet() method, where the
message must be sent to getSubject/getType, also specified on the command line. The
response message returned by the sendAndGet() method is taken off the head of the
queue.

Section

UTILITIES AND EXAMPLE PROGRAMS

27

To run the cMsgQueue application:

$ java org.jlab.coda.cMsg.apps.cMsgQueue -h
Usage:
java cMsgQueue [-name name] [-descr description] [-udl domain]

 [-subject subject] [-type type]
 [-queue queueName]
 [-getSubject getSubject] [-getType getType]
 [-dir queueDir] [-base fileBase]
 [-url url] [-driver driver] [-account account]
 [-pwd password] [-table table]

where udl is required, and queueName, subject, and type default to “default”, “*” and
“*”. name defaults to “cMsgQueue:queueName”, and getSubject and getType default to
name and “*”.

For file queuing, queueDir specifies the directory to hold the queue files, and fileBase
specifies the base for all file names (default is “cMsgQueue_queueName_”).
For database queuing url and driver must be specified, and account and password may be
required by the database. table defaults to “cMsgQueue_queueName”. One instance of
cMsgQueue can queue to either a file or database, not both.

8.3. cMsgGateway

The cMsgGateway implements simple inter-domain communication for domains that
support the send() and subscribe() messaging API functions. The cMsgGateway connects
to two domains and subscribes to the same subject/type combination in each. Messages
that match the subscription criteria in one domain are cross-posted to the other.
Note that a number of message fields get reset when the gateway forwards or cross-posts
the message (senderTime, senderHost, etc.) Unchanged are the creator, subject, type, text,
userInt, and userTime fields.

$ java org.jlab.coda.cMsg.apps.cMsgGateway -h
Usage:
java cMsgGateway [-subject subject] [-type type]

 [-name1 name1] [-udl1 udl1] [-descr1 descr1]
 [-name2 name2] [-udl2 udl2] [-descr2 descr2]
 [-debug]

where udl1 and udl2 are required, and the remainder are optional. Subject and type
default to * and * (i.e. subscribe to all subjects and types), and both name1 and name2
default to cMsgGateway.

UTILITIES AND EXAMPLE PROGRAMS

28

8.4. cMsgCAGateway

(this utility is not completed yet…ejw, 17-feb-2005)

The cMsgCAGateway utility serves out client data published via cMsg messages as
Channel Access or EPICS channels, and thus forms a bridge between the cMsg and
EPICS worlds. It is located in the xxx subdirectory.

The cMsgCAGateway is written in C++ and uses the Portable Channel Access Server
library. Upon startup it reads a configuration file containing a list of channels to serve,
as well as information describing what subjects to subscribe to, how to extract the
channel data from the messages, etc. The gateway can also create and serve out new
channels on the fly. The initial version serves out read-only data (i.e. no support for CA
put() yet), but read-write support is planned for a future release.

To start the cMsgCAGateway:

$ cMsgCAGateway -h
Usage:
cMsgCAGateway [-name name] [-udl udl] [-descr descr]

 [-cfg config_file] [-debug]

Note that due to channel access limitations only one cMsgCAGateway can run on a node
at a time.

8.5. cMsgAlarmServer

The cMsgAlarmServer logs alarm messages to a database, file, or to the screen.
The server subscribes to a special subject, set on the command line, and logs specially
formatted alarm messages.

The server looks at three fields in the incoming alarm message, other than the subject.
The type field contains the alarm channel name, an arbitrary string. The userInt field
contains the alarm severity, an arbitrary integer (e.g. you might use 0,1,2,3 for
ok,warn,error,severe_error). Finally the text field contains an arbitrary string that is
logged along with the channel name, alarm time, and severity.

The server can simultaneously log to a database, file, or the screen, but the nature of the
logging is not the same for all three, as the latter two are effectively write-only. Thus for
the file or screen the server simply logs the alarm information sequentially.

Database logging is more sophisticated, and four modes are possible, each using a
different table. The first two modes record full or partial histories, and the tables may
contain many entries per channel. In the second two modes only one entry per channel is
kept. Any or all modes may be active simultaneously.

UTILITIES AND EXAMPLE PROGRAMS

29

In “fullHistory” mode all messages are logged. In “history” mode only severity changes
are logged. I.e. if a message for a channel arrives with severity 1 but the channel is
already has severity 1, then the message is ignored.

In “change” mode the latest severity state of each channel is logged, and the time is only
modified if the channel changes severity state (analogous to history mode). In “latest”
mode only information from the most recent alarm message is kept. To understand the
difference between the two modes, imagine a channel that is monitored every minute and
has been in severity 0 for a week. In change mode the time field is set to a week ago,
while in latest mode it is set to one minute ago.

To start cMsgAlarmServer:

$ java cMsgAlarmServer -h
Usage:
cMsgAlarmServer [-name name] [-udl udl] [-descr descr]

 [-subject alarmSubject]
 [-screen] [-file filename] [-noAppend]
 [-fullHistory fullHistoryTable] [-history historyTable]
 [-change changeTable] [-latest latestTable]
 [-url url] [-driver driver] [-account account]
 [-pwd password]
 [-force] [-debug]

where name is the unique name of the server (default cMsgAlarmServer), udl denotes the
domain to connect to, default descr is “cMsg Alarm Server”, alarmSubject is the subject
to subscribe to (default cMsgAlarm), filename is the name of the file to log messages to
(default is append mode, use –noAppend to force opening of a new file), url is the
database url, driver is the database driver class, and account and password may be
required by the database. The four table names correspond to the four logging modes
described above. The tables are created if they do not exist. If a table, filename, or
screen is not specified that mode is inactive.

8.6. cMsgCommand

$ cMsgCommand -h
Usage:

 cMsgCommand [-u udl] [-n name] [-d description] [-sleep sleepTime]
 [-s subject] [-type type] [-i userInt] [-text text]

cMsgCommand is a C++ command line utility that sends a message based on command
line parameters. Only the subject, type, userInt, and text fields may be set. sleepTime
sets how long after sending the program disconnects (units in microsec, default 1000).

8.7. cMsgReceive

UTILITIES AND EXAMPLE PROGRAMS

30

$ cMsgReceive -h
usage:
 cMsgReceive [-udl udl] [-n name] [-d description] [-s subject] [-t type]

cMsgReceive is a C++ command line utility that subscribes to a subject/type combination
and prints a notice when messages arrive. It is a much simplified version of
cMsgLogger.

8.8. Example Programs

The cMsg distribution contains a number of Java example programs in
java/org/jlab/coda/cMsg/apps, and C/C++ examples in the src/examples and src/execsrc
directories (relative to top level directory).

The utility programs described above, also in the Java or C/C++ directories, should be
useful as examples as well.

JAVA TUTORIAL

31

9. Client and Server Control and Monitoring

9.1. Control

API calls exist to implement selective shutdown of clients and servers. The default client
shutdown handler causes the client to exit. Programmers can override this behavior by
supplying a custom handler that, e.g., causes the client to simply disconnect from the
cMsg system rather than exiting. See the API docs for details.

9.2. Monitoring

Monitoring is implemented through the cMsgMonitor(void *domainId, const char
*command, void **replyMsg) function in C and the monitor(String command) method
in Java, and is completely dependent on the domain implementation. See the API docs for
details.

The only monitoring available to date is for the cMsg domain with the most complete
information available for the cMsg subdomain. The monitoring data is collected in xml
format and can be accessed either through text-based programs which print the xml or
through a Java GUI which presents data in a tree.

The “monitor.c” program is an example of how to print out the xml using a C program
and the Java class apps.cMsgMonitor is an example of how to do that in Java. However,
to get a nice monitor GUI run the following:

java org/jlab/coda/cMsg/cMsgDomain/cMsgMonitor/Monitor

and the following GUI will appear:

Section

JAVA TUTORIAL

32

It’s fairly self-explanatory. Just type in the UDL, hit “Monitor”, and a new tab will be
added with all the monitoring information about the cMsg cloud of servers and all their
clients. The monitoring can be paused/resumed, closed, and the update period can be
changed.

JAVA TUTORIAL

33

10. Java Tutorial

An application can connect to many different domains, and publications and
subscriptions in different domains are independent.

10.1. Connect to a domain

import org.jlab.coda.cMsg.*;
import org.jlab.coda.cMsg.cMsgException;

cMsg cMsgSys; // the cMsg system object
try {
 cMsgSys = new cMsg(myUDL,myName,myDescr);
 cMsgSys.connect();
} catch (cMsgException e) {
 e.printStackTrace();

}

To disconnect from the domain:

cMsgSys.disconnect();

After calling disconnect(), all subscriptions and other connection information are lost.
Reconnections and failovers are possible in the cMsg domain (see 5.4.1).

Note that most cMsg calls throw cMsgException, so they must be in try blocks, as shown
above. Below I do not include the try blocks for clarity.

10.2. Create a message

// create message
cMsgMessage msg = new cMsgMessage();

// set regular fields
int myInt = 1;
long myTime = System.currentTimeMillis();
String mySubject = "s", myType = "t", myText = "txt";

msg.setSubject(mySubject);
msg.setType(myType);

Section

JAVA TUTORIAL

34

msg.setUserInt(myInt);
msg.setUserTime(myTime);
msg.setText(myText);

// add a payload item (array of strings)
String[] myStrings = new String[]{"one", "two", "three"};
cMsgPayloadItem item1 = new cMsgPayloadItem("STR_ARRAY", myStrings);
msg.addPayloadItem(item1);

// add another payload item (cMsg message)
cMsgMessage myMsg = new cMsgMessage();
myMsg.setSubject("sub");
myMsg.setType("type");
cMsgPayloadItem item2 = new cMsgPayloadItem("MSG", myMsg);
msg.addPayloadItem(item2);

10.3. Send a message
To send a message call send then flush the outgoing message queue. Note that the system
is free to flush the queue at will and in the cMsg domain, flush actually does nothing.

cMsgSys.send(msg);
cMsgSys.flush(null);

To synchronously send a message:

int status = cMsgSys.syncSend(msg);
// The returned status depends on domain and/or subdomain,
// and is zero for cMsg domain & subdomain.

where the nature of any failure is indicated in the thrown exception. The returned value is
dependent on the domain or in the case of the cMsg domain, it depends on the
subdomain. For the subdomain normally used, cMsg, the return value is always 0.

10.4. Subscriptions
To subscribe and unsubscribe with callback and user object:

import org.jlab.coda.cMsg.cMsgSubscriptionHandle;
cMsgSubscriptionHandle handle = cMsgSys.subscribe(mySubject, myType, myCB,

 myUserObject);
cMsgSys.unsubscribe(handle);

where the callback class is:

import org.jlab.coda.cMsg.cMsgCallbackAdapter;
class myCB extends cMsgCallbackAdapter {
 public void callback(cMsgMessage msg, Object userObject) {
 System.out.println("Subject is: " + msg.getSubject());
 System.out.println("Type is: " + msg.getType());
 System.out.println("Text is: " + msg.getText());
 }

JAVA TUTORIAL

35

}

and the userObject may be anything and exists solely for the programmer’s convenience.
The handle object is used for unsubscribing and interacting with the subscription.
In the cMsg domain the received messages are queued and delivered serially to the
callback in the order received. Configuration options (overriding of various methods)
allow for parallelizing callback processing into multiple threads, discard of messages
after a maximum number are waiting to be processed, etc. See the API docs for details.

To enable message receipt and delivery to callbacks:

cMsgSys.start();

To disable message receipt:

cMsgSys.stop();

ATTENTION: No messages will be delivered at all unless the start()
method is called!

10.5. Synchronous methods
The subscribeAndGet() method performs a synchronous one-shot subscribe. That is, it
temporarily subscribes to mySubject/myType (existing subscriptions and callbacks are
unaffected), waits for a matching message to arrive, then returns the message. If none
arrives within the timeout a timeout exception is thrown.

long myTimeout = 1000; /* 1 sec */
cMsgMessage m = cMsgSys.subscribeAndGet(mySubject, myType, myTimeout);
// exception thrown if no message arrived within timeout

The sendAndGet() method synchronously sends a message and gets a private response
from the receiver:

long myTimeout = 1000; /* 1 sec */
cMsgMessage response = cMsgSys.sendAndGet(msg, myTimeout);
// exception thrown if no message arrived within timeout

When the receiver gets the message it has to first recognize that this is a synchronous
request, then create the response message via a special method (and NOT via the usual
cMsgMessage constructor). Receiver code might look like:

// ...just got a message via a callback
// ...send a response if it is a synchronous request message
If (msg.isGetRequest()) {
 cMsgMessage response = msg.response(); // create special response
 response.setSubject(mySubject);
 response.setType(myType);
 response.setText(myText);
 cMsgSys.send(response);

JAVA TUTORIAL

36

 cMsgSys.flush();
}

If two receivers synchronously respond to the message as above the first one sent gets
returned by the sendAndGet() method in the client. The second response is treated as a
normally published message.

C TUTORIAL

37

11. C Tutorial

An application can connect to many different domains, and publications and
subscriptions in different domains are independent.

11.1. Connect to a domain

 #include <cMsg.h>

int stat;
void *domainId;
char *myUDL, *myName, *myDescription;

stat = cMsgConnect(myUDL, myName, myDescription, &domainId);
if (stat!=CMSG_OK) {
 /* something is wrong */
}

where domainId is used in many subsequent calls to identify the connection to this
particular UDL. In the following, error checking is not done for brevity and readability.
To disconnect from the domain:

cMsgDisconnect(&domainId);

After calling cMsgDisconnect(), all subscriptions and other connection information are
lost. Any attempt to use the domainId again will return an error. Reconnections and
failovers are possible in the cMsg domain (see 5.4.1).

11.2. Create a message

/* create a message */
void *msg = cMsgCreateMessage(); /* be sure to free message when done */

/* set regular fields */
int myInt = 1;
struct timespec myTime;
char *mySubject = "s", *myType = "t", *myText = "txt";
clock_gettime(CLOCK_REALTIME, &myTime);

cMsgSetSubject(msg, mySubject);

Section

C TUTORIAL

38

cMsgSetType(msg, myType);
cMsgSetUserInt(msg, myInt);
cMsgSetUserTime(msg, myTime);
cMsgSetText(msg, myText);

/* add a payload item (array of strings) */
char *myStrings[] = {"one", "two", "three"};
cMsgAddStringArray(msg, "STR_ARRAY", (const char **) myStrings, 3);

/* add another payload item (cMsg message) */
void *myMsg = cMsgCreateMessage();
cMsgSetSubject(myMsg, "sub");
cMsgSetType(myMsg, "type");
cMsgAddMessage(msg, "MSG", myMsg);

11.3. Send a message
To send a message call send then flush the outgoing message queue. Note that the system
is free to flush the queue at will and in the cMsg domain, flush actually does nothing. Be
sure to free messages when you are done with them.

struct timespec timeout = {0,0};
cMsgSend(domainId, msg);
cMsgFlush(domainId, &timeout);
cMsgFreeMessage(&msg);

To synchronously send a message:

int stat, statusCode;
stat = cMsgSyncSend(domainId, msg, NULL, &statusCode);
if (stat != CMSG_OK) {
 // something went wrong...
}

where the nature of the failure, if indicated, is domain specific, and statusCode holds a
domain-specific return value.

11.4. Subscriptions
To subscribe and unsubscribe with callback and user arg:

void *myHandle;
cMsgSubscribeConfig *myConfig = cMsgSubscribeConfigCreate();
cMsgSubscribe(domainId, mySubject, myType, myCB, (void*)myUserArg, myConfig,

&myHandle);
cMsgUnSubscribe(domainId, myHandle);
cMsgSubscribeConfigDestroy(myConfig);

where the callback function is:

void myCB(void* msg, void* userArg) {
 char *s;

 cMsgGetSubject(msg, &s); printf("Subject is: %s\n",s);

C TUTORIAL

39

 cMsgGetType(msg, &s); printf("Type is: %s\n",s);
 cMsgGetText(msg, &s); printf("Text is: %s\n",s);
 cMsgFreeMessage(&msg);
}

and the user arg, myUserArg, may be anything and exists solely for the programmer’s
convenience. The sixth argument of cMsgSubscribe() (myConfig) is a pointer to a
subscription configuration created with cMsgSubscribeConfigCreate() and modified by
the use of many other functions. Finally, the last argument, myHandle, is just a void
pointer which is used for unsubscribing and interacting with the subscription.
In the cMsg domain the received messages are queued and delivered serially to the
callback in the order received. Configuration options allow for parallelizing callback
processing into multiple threads, discard of messages after a maximum number are
waiting to be processed, etc. See the API docs for details.

To enable message receipt and delivery to callbacks:

cMsgReceiveStart(domainId);

To disable message receipt use:

cMsgReceiveStop(domainId);

ATTENTION: No messages will be delivered at all unless
cMsgReceiveStart() is called!

11.5. Synchronous Routines
The cMsgSubscribeAndGet() function performs a synchronous one-shot subscribe. That
is it temporarily subscribes to mySubject/myType (existing subscriptions and callbacks
are unaffected), waits for a matching message to arrive, then returns the message. Be sure
to free the message when done with it.

void *msg;
struct timespec myTimeout = {1,0}; /* 1 sec */
stat = cMsgSubscribeAndGet(domainId, mySubject, myType, &myTimeout, &msg);
if (stat!=CMSG_OK) {
 /* timeout or error */
}

The cMsgSendAndGet() function synchronously send a message and get a private
response from the receiver:

void *reply;
struct timespec myTimeout = {1,0}; /* 1 sec */
stat = cMsgSendAndGet(domainId, msg, &myTimeout, &reply);
if (stat!=CMSG_OK) {
 /* timeout or error */
}

C TUTORIAL

40

When the receiver gets the message, it has to first recognize that this is a synchronous
request, then create the response message via a special function (and NOT via
cMsgCreateMessage()). Be sure to free the message when done with it.
Receiver code might look like:

/*
* Just got a message via a callback...
* ...send a response if it is a synchronous request message
*/

if (cMsgGetGetRequest(msg)) {
 void *response = cMsgResponse(msg); /* create special response */
 cMsgSetSubject(response, mySubject);
 cMsgSetType(response, myType);
 cMsgSetText(response, myText);
 cMsgSend(domainId, response);
 cMsgFlush(domainId, &myTimeout);
 cMsgFreeMessage(&response);
}

If two receivers synchronously respond to the message as above the first one sent gets
returned by the sendAndGet() method in the client. The second response is treated as a
normally published message.

C++ TUTORIAL

41

12. C++ Tutorial

An application can connect to many different domains, and publications and
subscriptions in different domains are independent.

12.1. Connect to a domain
To create the cMsg system object and connect to a domain:

#include <cMsg.hxx>

string myUDL, myName, myDescription;
cMsg cMsgSys(myUDL, myName, myDescription)

try {
 cMsgSys.connect();
} catch (cMsgException e) {
 cout << e.toString() << endl;

}

To disconnect from the domain:

cMsgSys.disconnect();

After calling disconnect(), all subscriptions and other connection information are lost.
Reconnections and failovers are possible in the cMsg domain (see 5.4.1). Note that most
cMsg calls throw cMsgException, so they must be in try blocks, as shown above. Below
I do not include the try blocks for clarity.

12.2. Create a message

// create a message
cMsgMessage msg;

// set regular fields
int myInt = 1;
struct timespec myTime;
string mySubject = "s", myType = "t", myText = "txt";
clock_gettime(CLOCK_REALTIME, &myTime);

msg.setSubject(mySubject);

Section

C++ TUTORIAL

42

msg.setType(myType);
msg.setUserInt(myInt);
msg.setUserTime(myTime);
msg.setText(myText);

// add payload item (array of strings)
string name = "STR_ARRAY", name2 = "MSG";
string strs[3] = {"one", "two", "three"};
msg.add(myName, strs, 3);

// add another payload item (cMsg message)
cMsgMessage myMsg;
myMsg.setSubject("sub");
myMsg.setType("type");
msg.add(name2, myMsg);

12.3. Send a message
To send a message and flush the outgoing message queue:

cMsgSys.send(msg);
cMsgSys.flush();

Many messages can be sent before flushing the outgoing queue. Note that the system is
free to flush the queue at will.

To synchronously send a message:

int val = cMsgSys.syncSend(msg);

where the nature of any failure is indicated in the thrown exception. The returned value is
dependent on the domain or in the case of the cMsg domain, it depends on the
subdomain. For the subdomain normally used, cMsg, the return value is always 0.

12.4. Subscriptions
To subscribe and unsubscribe with callback and user object:

void *handle = cMsgSys.subscribe(mySubject, myType, myCB,
 (void*)myUserObject);
cMsgSys.unsubscribe(handle);

where the callback class is:

class myCB:public cMsgCallbackAdapter {
 void callback(cMsgMessage msg, void* userObject) {
 cout << "Subject is: " << msg.getSubject()) << endl;
 cout << "Type is: " << msg.getType()) << endl;
 cout << "Text is: " << msg.getText()) << endl;
 }
}

C++ TUTORIAL

43

and the userObject may be anything and exists solely for the programmer’s convenience.
In the cMsg domain the received messages are queued and delivered serially to the
callback in the order received. Configuration options allow for parallelizing callback
processing into multiple threads, discard of messages after a maximum number are
waiting to be processed, etc. See the API docs for details.

To enable message receipt and delivery to callbacks:

cMsgSys.start();

To disable message receipt:

cMsgSys.stop();

ATTENTION: No messages will be delivered at all unless the start()
method is called!

12.5. Synchronous methods
The subscribeAndGet() method performs a synchronous one-shot subscribe. That is, it
temporarily subscribes to mySubject/myType (existing subscriptions and callbacks are
unaffected), waits for a matching message to arrive, then returns the message. If none
arrives within the timeout an exception is thrown.

struct timespec myTimeout = {1,0}; /* 1 sec */
cMsgMessage m = cMsgSys.subscribeAndGet(mySubject, myType, &myTimeout);
// timeout exception thrown if no message arrives within timeout

The sendAndGet() method synchronously sends a message and gets a private response
from the receiver:

struct timespec myTimeout = {1,0}; /* 1 sec */
cMsgMessage response = cMsgSys.sendAndGet(msg, &myTimeout);
// timeout exception thrown if no message arrives within timeout

When the receiver gets the message it has to first recognize that this is a synchronous
request, then create the response message via a factory (and NOT via the usual
cMsgMessage constructor). Receiver code might look like:

// ...just got a message via a callback
// ...send a response if it is a synchronous request message
If (msg.isGetRequest()) {
 cMsgMessage *response = msg.response(); // create special response
 response->setSubject(mySubject);
 response->setType(myType);
 response->setText(myText);
 cMsgSys.send(response);
 cMsgSys.flush();
}

C++ TUTORIAL

44

If two receivers synchronously respond to the message as above the first one sent gets
returned by the sendAndGet() method in the client. The second response is treated as a
normally published message.

GETTING AND INSTALLING CMSG

45

A. Getting and Installing cMsg

You must install Java version 1.5 or higher if you plan to run the cMsg server. If you
only plan to run C/C++ clients (i.e. if you will use someone else’s cMsg server) you can
skip the Java installation. If you only plan to use Java domains and clients you can skip
the C/C++ installation.

1) Getting cMsg

The cMsg package, including documentation, can be found in the Downloads section on
the JLab Data Acquisition Group portal at http://coda.jlab.org. To install cMsg, download
the cMsg-3.0.tar.gz file (or whatever version happens to be current) and untar it. This will
give you a full cMsg distribution with the top level directory being “cMsg”. The
documentation, in the “doc” subdirectory, contains User’s and Developer’s Guides
(word, pdf), javadoc for the Java API (html), and Doxygen directories containing C, C++
API docs (html, pdf, latex).

2) Compiling C/C++ code

a) Using SCons

From the SCons website: “SCons is an Open Source software construction tool -- that is,
a next-generation build tool. Think of SCons as an improved, cross-platform substitute
for the classic Make utility with integrated functionality similar to autoconf/automake
and compiler caches such as ccache. In short, SCons is an easier, more reliable and faster
way to build software”. SCons is written in python, thus to use this build system with
cMsg, both python and SCons packages need previous installation. If your system does
not have one or the other, go to the http://www.python.org/ and http://www.scons.org/
websites for downloading.

The SCons files are already included as part of the cMsg distribution. To compile, the
user needs merely to run “scons” in the top level cMsg directory. To compile and install
(equivalent of “make install”) run “scons install”.

The following is a table of SCons compilation options:

Appendix

GETTING AND INSTALLING CMSG

46

scons option action
-h print out help
-c remove generated files
install make C and C++ library code and place libraries architecture-

specific directory and headers in include directory
examples make C and C++ executables code and place executables in

architecture-specific directory
tar create a tar file (cMsg-3.0.tar.gz) of the cMsg top level directory

and put in …/tar directory
--uninstall remove all installed headers, libraries, and executables for C, C++
-c install remove all installed headers, libraries, and executables for C, C++

and all generated files
--prefix=<dir> use base directory <dir> when doing install
--dbg compile with debug flag
--32bits compile 32bit libraries & executables on 64bit system
--vx cross compile for vxworks

b) Using make

The necessary makefiles for building cMsg are contained in an external package called
BMS. BMS can be downloaded from the same ftp directory as cMsg. To get a complete
look at this makefile system and how to use it to compile cMsg, read the BMS
documentation. The following is a quick look at how to compile cMsg just to get you
going but skips over many details.

After BMS has been downloaded and untarred, set the environmental variable
BMS_HOME to its installation directory and the variable CODA_HOME or
INSTALL_DIR to the directory which will hold the compiled cMsg libraries,
executables, headers and other files. Change directories to “cMsg” and make everything
by typing “make install”. Just doing a “make” at this point runs into trouble since the
makefiles look into the install directory for the libraries when making the executables
(yes, I know it’s inconvenient, but if you want convenience use SCons to make cMsg).
Note that currently only Linux, Solaris, and Darwin (Mac OSX) operating systems are
supported for the making of all the C and C++ code.

download BMS.tar.gz into myDir
download cMsg-3.0.tar.gz into myDir
$ cd myDir
$ tar –fxz BMS.tar.gz
$ setenv BMS_HOME myDir/BMS
$ mkdir cmsg_install
$ setenv INSTALL_DIR myDir/cmsg_install
$ tar –fxz cMsg-3.0.tar.gz
$ cd cMsg

GETTING AND INSTALLING CMSG

47

$ make install

This will make everything except docs – directories, java, C, and C++. There are other
options for making cMsg. The following is a table of the main makefile possibilities:

make command action
make make all code including creating necessary directories but does

NOT create documentation
make help print out help
make env print out environmental variables
make install make C and C++ code and place libraries and executables in

architecture-specific lib and bin directories and headers in include
directory

make uninstall remove all installed headers, libraries, and executables for C, C++
make relink delete libraries and executables, and relink object files
make tar create a tar file (cMsg-3.0.tar.gz) of the cMsg top level directory

and put in …/tar directory
make clean clean C and C++ code in …/src subdirectories by removing

libraries, executables, object and dependency files
make distClean make clean and remove hidden architecture-specific directories
make execClean delete all libraries and executables
make doc generate documentation from code - javadoc and doxygen
make mkdirs create the directories needed to store docs, include files, and

architecture-specific libraries, executables, & object files
make java make java code and put jar file in …/build/lib directory
make javaClean remove class files from …/build/classes directory
make javaDistClean remove all java generated files including class, doc, and jar files

Setting the variable CODA_USE64BITS to anything (value not used) will cause flags to
be set that will compile the code to be 64 bits. Note that trying to compile for 64 bits on a
32 bit machine causes an error on Solaris while Linux just creates 32 bit code. Vxworks
ignores CODA_USE64BITS.

For debugging, simply define the DEBUG environmental variable to anything (its value
is ignored). This automatically gets rid of the optimization flag and adds the –g flag to the
compilers. The debug versions of binaries are given suffixes of _d to distinguish them
from their non-debug counterparts and so that they may share directories with them. For
example, a library name libFOO.a will have a debug version named libFOO_d.a, and an
executable named BAR will have a debug version named BAR_d.

3) Compiling Java

GETTING AND INSTALLING CMSG

48

One can obtain the cMsg.jar file from the general cMsg distribution as outlined above or
just download the jar file by itself. In either case, put the jar file into your classpath and
run your java application. The current version needs a Java 1.5 or later JVM.

If you wish to recompile the java part of cMsg, first extract the package files from the
general cMsg tar file:

download cMsg-3.0.tar.gz into myDir
$ cd myDir
$ tar –fxz cMsg-3.0.tar.gz
$ cd cMsg

There are 2 ways to go from here. You can use make which calls ant underneath:

$ make java

or you can use ant directly simply by calling “ant” in the top level directory. To get a list
of option with ant, type:

ant help

ant command action
ant, ant compile compile all java source code
ant help print out usage
ant env print out value of build file variables
ant clean delete all class files
ant cleanall remove build and javadoc directories
ant jar compile and create jar file
ant all do clean, compile, then create jar file
ant javadoc create javadoc documentation
ant prepare create necessary directories
ant developdoc create javadoc documentation for developer

Included in the jar subdirectory are all auxiliary jar files used by the built-in domains and
subdomains. Code is not provided. Thus to use the Channel Access or the SmartSockets
(sub)domains the user must include the necessary jar files in the classpath. Check the
individual package web sites for more information.

4) Using C/C++

The libraries and executables are place into the $(ARCH)/lib and bin subdirectories (i.e.
Linux-x86_64/bin and Linux-x86_64/lib). Be sure to change your
LD_LIBRARY_PATH environmental variable to include the correct lib directory.

REVISION HISTORY

49

B. Revision History

Version Date Comment
0.9 Beta 24-March-2005 Original beta test version
1.0 4-May-2005 First full-release version
3.0 7-June-2009

Appendix

CONTACT INFORMATION

50

C.Contact Information

The Jefferson Lab Data Acquisition Portal is located at http://coda.jlab.org. The author’s
email addresses are listed on the second page of this manual. Bug/feature requests can be
made by following the “Request Tracker” link on the portal (we use the Mantis Request
Tracking package). Further contact information can be found by following the YYYY
link on the portal.

Appendix

