
JEFFERSON LAB

Data Acquisition Group

BMS User’s Guide

Version

1.0

J E F F E R S O N L A B D A T A A C Q U I S I T I O N G R O U P

BMS User’s Guide

Carl Timmer

timmer@jlab.org

David Lawrence

davidl@jlab.org

10-Sep-2008

 Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave

Newport News, VA 23606
Phone 757.269.5130 • Fax 757.269.6248

2

Table of Contents

1. Introduction ... 4

2. File Naming Conventions ... 4

2.1. Makefiles ... 4
2.1.1. Table: makefiles included by users ... 5

2.2. C and C++ Files ... 5

2.3. Binary Files ... 5
2.3.1. Table: hidden directories containing binary files ... 5

3. Dependencies ... 5

4. BMS Defined Targets ... 6

4.1.1. Table: predefined BMS makefile targets... 6

5. Using BMS ... 6

5.1. Operating System and Architecture ... 6

5.2. What Gets Compiled? .. 7

5.3. Compile and Link Flags .. 7

5.4. Optimization and Debugging .. 7

5.5. Libraries .. 7

5.6. Executables .. 8

5.7. User-Defined Targets .. 8

5.8. 64 Bit Compilation .. 8

5.9. External Software Packages .. 8

5.10. Example Makefile .. 9

5.11. Installation ...10
5.11.1. Table: installation location of file types ...11

6. Vxworks ..11

7. Makefiles at the Package Level ...11

7.1. Example ..12

7.2. Makefile.local ...14

8. CODA-Specific Compilation ...14

8.1. Package Directory Structure ..14
8.1.1. Table: software package directory structure ...15

8.2. CODA makefile...16

8.3. JAVA ...18

3

8.3.1. Table: ant targets and actions ...21

4

1. Introduction

The Build Management System (BMS) is a set of GNU makefiles which simplify and

standardized the building of source code distributed throughout a directory tree. The goal

of BMS is to implement makefile behavior in a generic way so that makefiles for large

numbers of projects don’t have to be maintained separately. Files with .c, .cc suffixes are

automatically compiled. Platform dependence is handled through automatic inclusion of

platform specific makefiles. Building versions for debugging is done by setting a single

variable. Cross compiling for vxworks is handled by setting 2 variables.

There are actually 2 BMS systems. The first was developed by David Lawrence for Hall-

D software. This BMS system was adapted from the original by the Data Acquisition

Group for CODA software.

.In contrast to a typical makefile, the BMS makefiles contain no information about the

names of the files that they need to compile. Rather, they assume that all source files in a

directory should be compiled. It is believed that this can help lead to better maintenance

of the source tree, as files which should not be compiled must not be kept among those

that should. Files which are placed into a single library must be together in one directory.

Likewise, files containing related executables (containing “main” in the case of C, C++),

are placed in their own directory.

Makefiles in the library and executable directories simply include appropriate makefiles

from BMS. For example, an actually makefile may be as simple as the one below.

include $(BMS_HOME)/Makefile.common

include $(BMS_HOME)/Makefile.libs

2. File Naming Conventions

2.1. Makefiles

In order to allow great simplification when creating upper level makefiles, the bottom

level makefiles must be named Makefile for unix and Makefile.vxworks-<arch> for cross

compiling vxworks. Currently makefiles for vxworks are called Makefile.vxworks-ppc

since the PPC platform is the only one in use. Generally speaking, on the lowest level

there must be a Makefile.vxworks-ppc in each directory that there is a Makefile even if

the vxworks makefile is a dummy which does nothing. See section 6 for further

discussion on this subject.

 The BMS files themselves can be checked out of the subversion repository into a single

directory. To use BMS, the BMS_HOME environmental variable must be set to this

directory. See the following table for makefiles used directly by the user.

5

2.1.1. Table: makefiles included by users

Makefile Name Function

Makefile.common this should be included first and contains definitions
necessary for all compilation

Makefile.libs this should be included for making static and shared
libraries and allows for user-defined targets

Makefile.bin this should be included to make executables and allows for
user-defined targets

Makefile.lib this is a variation of Makefile.libs which only creates a static
library

There are other makefiles in BMS that are OS specific like Makefile.Linux, GNU

specific like Makefile.GNU, and software package specific like Makefile.xerces or

Makefile.cMsg. However, the user should not have to deal with these directly.

2.2. C and C++ Files

C source files must end in .c while C++ source files must end in .cc, .cpp, or .cxx. Header

files should end in .h, .hh, or .hxx.

2.3. Binary Files

The term “binary files” refers to library, executable and object files. In general, binary

files are kept in hidden directories which are operating system and architecture

dependent. These are listed as follows:

2.3.1. Table: hidden directories containing binary files

FILE TYPE DIRECTORY

library .$(BMS_OSNAME)/lib

executable .$(BMS_OSNAME)/bin

object .$(BMS_OSNAME)/object

dependency .$(BMS_OSNAME)/depends

3. Dependencies
The purpose and power of a make system is to recompile only when necessary. To

accomplish this, the make system must be aware of the dependencies of the source files.

Specifically, the system should recompile a source file if either it or any header files on

which it depends have been changed. BMS does this by making use of a feature of the

compilers (GNU and Solaris) to generate dependency rules by examining the source files

6

themselves. The dependency rules are generated and stored in files in the dependency

directory listed in the table above. The depends files are given names with a .d suffix.

4. BMS Defined Targets
There are a number of standard targets already defined in Makefile.libs, Makefile.lib,

Makefile.bin, and Makefile.common. These targets do commonly desired tasks such as

making the source, installing libraries, uninstalling, cleaning, and the like. Below is a

listing of these targets:

4.1.1. Table: predefined BMS makefile targets

TARGET EFFECT

all Creates directories, makes dependencies, and makes libraries,
executables, and user-defined targets

env Prints out makefile variables of interest

mkdir Creates directories necessary for BMS. Normally done in “all”.

install Makes all (above) and installs into INSTALL_DIR

uninstall Removes files that were installed

clean Deletes all executable, library, object, and dependency files

distClean Makes clean (above) and also removes hidden OS directory

execClean Deletes all executable and library files

relink Deletes library and executables, then relinks object files

here Makes all and installs into the current directory

hereClean Removes binaries from the current directory

5. Using BMS
The behavior of BMS can be modified through the setting of environmental variables.

The various ways in which users can determine this behavior are discussed below.

5.1. Operating System and Architecture

By default, the variables BMS_OS and BMS_ARCH are defined as uname and uname –

m, but these can also be set by users. The variable BMS_OSNAME is set as

$(BMS_OS)-$(BMS_ARCH) unless set by users. The significance of setting these is that

the makefiles Makefile.$(BMS_OS), Makefile.$(BMS_ARCH), and

Makefile.$(BMS_OSNAME) are all automatically included by Makefile.common in that

order. If these variables are not set by the user, Makefile.common sets all variables

appropriate for the local operating system and architecture. It is advisable NOT to set

them unless compiling for vxworks in which case BMS_OS should be set to vxworks and

BMS_ARCH should be set to ppc.

7

5.2. What Gets Compiled?

If users’ makefiles include Makefile.libs, all source code gets compiled and placed in the

library(ies) by default. If users’ makefiles include Makefile.bin, all source code with the

function “main” will be compiled by default. Note that this function must be declared as

“int main” on one line for BMS to automatically find the executables. Either that or a

space must precede main on the same line.

Users may define a space-separated list of objects to NOT be compiled in the variable

NO_OBJS. Likewise, a space-separated list of objects for which dependencies should

NOT be made can be placed in the variable NO_DEP_OBJS.

5.3. Compile and Link Flags

Special compile flags may be added for C and C++ compilation by adding the lines:

 CFLAGS += myflag

 CXXFLAGS += myflag

respectively. Be sure to use the “+=” operator or all the other necessary flags will be

overwritten.

For linking, add directories in which to find libraries by adding:

 LD_LIBS += dir ,

add link flags for creating libraries by adding:

 LD_SO_FLAGS += flag ,

and add link flags for creating executables by adding:

 LDFLAGS += flag .

5.4. Optimization and Debugging

To compile optimized code, in the users’ makefile, before including Makefile.common,

include the line:

 OPTIMIZE = N

where N can be 1,2, or 3. This adds the optimization flag –O1, -O2, or –O3 for GNU

compilers or the flag –xO1, -xO2, or –xO3 for Solaris compilers. By default there is no

optimization.

For debugging, simply define the DEBUG environmental variable to anything (its value

is ignored). This automatically gets rid of the optimization flag and adds the –g flag to the

compilers. The debug versions of binaries are given suffixes of _d to distinguish them

from their non-debug counterparts and so that they may share directories with them. For

example, a library name libFOO.a will have a debug version named libFOO_d.a, and an

executable named BAR will have a debug version named BAR_d.

When making a debug version of an executable, it is assumed that the needed debug

versions of the libraries have been made. This is the same behavior as for the non-debug

versions. The point of this is that one cannot link debug objects with non-debug libraries.

5.5. Libraries

By default, libraries will be named lib$(MODULE_NAME).a / .so for static and shared

libraries respectively, and lib$(MODULE_NAME)_d.a / .so for debug versions.

8

However, users can supersede this by setting SHLIB_NAME for a shared library and

LIB_NAME for a static library. Also the .so suffix of shared libraries can be superseded

by setting SHLIB_SUFFIX.

Before including Makefile.libs, defining MAKE_SHARED_LIB as any value will make

a shared library. Similarly, defining MAKE_STATIC_LIB as any value will make a

static library.

5.6. Executables

Before including Makefile.bin, defining the variable OTHER_DEPS as a space-separated

list of files will cause the executables to be remade from the object files when the files

listed in OTHER_DEPS change.

5.7. User-Defined Targets

Before including either Makefile.bin or Makefile.libs, users can define

OTHER_TARGETS as a space-separated list of additional targets. After including

Makefile.common, users need to define the targets themselves. If a target is defined

before Makefile.common is included, it becomes the first and therefore default target.

This will break the expected behavior. “Make install” will install them and “make

uninstall” will uninstall them as well.

The best way to define your target is to precede it with the proper directory: $(LIB_DIR)

when making an library and $(BIN_DIR) when making an executable. That way the user-

defined target gets stored in the same os and architecture dependent directory as the rest

of the compiled code. See the example makefile and its OTHER_TARGET in section

5.10

5.8. 64 Bit Compilation

Setting the variable CODA_USE64BITS to anything (value not used) will cause flags to

be set that will compile the code to be 64 bits. Note that trying to compile for 64 bits on a

32 bit machine causes an error on Solaris while Linux just creates 32 bit code. Vxworks

ignores CODA_USE64BITS.

5.9. External Software Packages

When making libraries or executables that depend on an external software package, users

simply need to define the variable PACKAGES in the makefile. Define PACKAGES as a

colon separated list of the needed software packages. For example, if one needs the et and

cMsg libraries for an executable or the et and cMsg headers to make a library, the line:

PACKAGES = et:cMsg

must be present in the makefile before including Makefile.common. What this does is

include the files Makefile.et and Makefile.cMsg in that order in Makefile.common. These

makefiles must exist in the BMS directory to work and the package names are case

sensitive.

Another way to access external libraries and include directories is by adding them to the

variable MISC_LIBS:

 MISC_LIBS += -LmyLibDir –lmyLib .

9

5.10. Example Makefile

The following makefile is an example of all the issues discussed up to this point. It is

taken from the et library source directory but with the irrelevant material removed:

1 ifndef BMS_HOME

2 $(error "Need to define BMS_HOME")

3 endif

4 ifeq ($(BMS_OS), vxworks)

5 $(error "This makefile is for unix, use Makefile.vxworks-ppc")

6 endif

7 TOPLEVEL = ../..

8 MODULE_NAME = et

9 NO_OBJS = et_remoteclient.o

10 include $(BMS_HOME)/Makefile.common

11 # objects for making a remote library

12 ROBJS = et_statconfig.o \

13 et_openconfig.o \

14 et_init.o \

15 et_sysconfig.o \

16 et_remote.o \

17 et_network.o \

18 et_remoteclient.o

19 RDOBJS = $(addsuffix $(DEBUG_SUFFIX).o,$(basename $(ROBJS)))

20 OTHER_TARGETS += $(LIB_DIR)/libet_remote$(DEBUG_SUFFIX).so

21 RLINK_OBJS = $(addprefix $(OBJ_DIR)/,$(RDOBJS))

22 MAKE_SHARED_LIB = make_me_please

23 MAKE_STATIC_LIB = make_me_please

24$(LIB_DIR)/libet_remote$(DEBUG_SUFFIX).so: $(RDOBJS)

25 $(LD) $(LD_SO_FLAGS) $(LD_DIRS) $(RLINK_OBJS) $(LD_LIBS) -o $@

26 include $(BMS_HOME)/Makefile.libs

Lines 1-3: The first order of business is to know where the BMS makefiles are since

Makefile.common and Makefile.libs must be included. Thus the

environmental variable BMS_HOME must be defined or an error is

returned.

Lines 3-6: When run, GNU make first looks for the file GNUmakefile, then for

makefile, and finally for Makefile. In the CODA BMS system all

makefiles are called either Makefile, Makefile.local, or Makefile.vxworks-

ppc. Thus, make will use Makefile by default – which is the unix makefile.

These lines do not allow the unix makefile to be used with vxworks.

Line 7: Makefile.local is included if make is run in the package or source code

level directories. The variable TOPLEVEL specifies where the software

10

package’s top level directory is so the location of Makefile.local is known.

See section 7.2 for more on Makefile.local.

Line 8: Setting the module name to “et” means that the libraries made in this

directory will be called libet.so and libet.a .

Line 9: NO_OBJS contains the objects NOT to be included in the libraries.

Line 10: Once NO_OBJS is defined, Makefile.common can be included. It contains

all the basic definitions needed for BMS makefiles to work.

Lines 11-18: In the “et” software package, not only must a shared and a static library be

made, but the third library called libet_remote.so must be made as well.

The third library contains a subset of the files in the regular libraries along

with the object specifically excluded from the regular libraries. These lines

list all the needed objects for libet_remote.so in ROBJS.

Line 19: RDOBJS adds the debug suffix (if any) to the objects needed in

libet_remote.so

Line 20: OTHER_TARGETS lists the libet_remote.so library as an extra target to

be made in addition to the 2 libraries normally make when including

Makefile.libs. Notice the prefix of $(LIB_DIR)/ which is the default

location of libraries in BMS

Line 21: RLINK_OBJS adds a prefix of $(OBJ_DIR)/ to the objects listed in

RDOBJS. This is where BMS stores object files.

Line 22: Defining MAKE_SHARED_LIB to any value tells Makefile.libs to make

a shared library.

Line 23: Defining MAKE_STATIC_LIB to any value tells Makefile.libs to make a

static library.

Lines 24-25: Define the targets listed in OTHER_TARGETS. The target must be

defined after including Makefile.common otherwise it would become the

first and default rule. It may come after Line 26 if desired.

Line 26: Now that OTHER_TARGETS, MAKE_STATIC_LIB, and

MAKE_SHARED_LIB are defined, include the BMS makefile that will

make libraries – Makefile.libs.

5.11. Installation

Define the variable INSTALL_DIR to the desired installation directory. If this is not

defined, Makefile.common will set this to the value of the variable CODA_HOME. If

CODA_HOME is not defined either, an error will be printed and the build will be

stopped. A “make install” will place everything made and headers into predefined places

as seen in the table following.

11

5.11.1. Table: installation location of file types

File Type Installation Location

Library $(INSTALL_DIR)/$(BMS_OSNAME)/lib

Executable $(INSTALL_DIR)/$(BMS_OSNAME)/bin

Include $(INSTALL_DIR)/include

Documentation $(INSTALL_DIR)/doc/<package name>

6. Vxworks
BMS can cross compile for vxworks with a little bit of effort. Remember that by default

the operating system and architecture are taken from the local machine. For vxworks, the

following two environmental variables must be set by hand to:

 BMS_OS = vxworks

 BMS_ARCH = ppc

Very often what gets compiled for vxworks is significantly different than what gets

compiled for unix. This means that in order to avoid “ifdef vxworks” type constructs in

makefiles, the user must create a whole new makefile for vxworks. For consistency and

simplicity, these makefiles must be named Makefile.vxworks-ppc. Other than that there

are no differences with the makefiles for unix.

In some directories there are no files to be compiled for vxworks. In such cases a dummy

vxworks makefile can make upper level makefiles easier to create. An example of a good

dummy vxworks makefile is given below:

This is a dummy makefile that does nothing

dummy:

 @echo "No vxworks stuff in directory $(shell pwd)"

%:

 @echo "No vxworks stuff in directory $(shell pwd)"

Its default target is “dummy” which prints out a message saying there is no vxworks stuff

in the directory. It also has a pattern rule which matches all targets. Thus users can type

“make <anything>” and the same message gets printed out.

7. Makefiles at the Package Level
The BMS files Makefile.common, Makefile.libs, Makefile.lib, and Makefile.bin are

designed to be used at the bottom level – the directories in which the source code lives. It

would be awkward to go into each source directory by hand to make the multiple parts of

12

one software package, so an upper level makefile must exist for each independent

software package.

7.1. Example

Since an upper level makefile does not actually use any of the BMS makefiles, it is

technically not a part of the BMS system. However, since it must work closely with

BMS, the art of constructing such a makefile is included here. Following is a makefile

taken from the cMsg software package:

1 MAKEFILE = Makefile

2 # if using vxworks, use different set of the lowest level makefiles

3 ifeq ($(BMS_OS), vxworks)

4 ifdef BMS_ARCH

5 MAKEFILE = Makefile.$(BMS_OS)-$(BMS_ARCH)

6 else

7 $(error "Need to define BMS_ARCH if using BMS_OS = vxworks")

8 endif

9 endif

10 # define TOPLEVEL for use in making doxygen docs

11 TOPLEVEL = .

12 # list dirs in which to run makefiles (relative to this one)

13 SRC_DIRS = src/regexp src/libsrc src/libsrc++ src/execsrc src/examples

14 # declaring a target phony skips the implicit rule search and saves time

15 .PHONY : first help java javaClean javaDistClean doc tar

16 first: all

17 java:

18 ant;

19 javaClean:

20 ant clean;

21 javaDistClean:

22 ant cleanall;

23 doc:

24 ant javadoc;

25 export TOPLEVEL=$(TOPLEVEL); doxygen doc/doxygen/DoxyfileC

26 export TOPLEVEL=$(TOPLEVEL); doxygen doc/doxygen/DoxyfileCC

27 cd doc; $(MAKE) -f $(MAKEFILE);

28 tar:

29 -$(RM) tar/cMsg-1.0.tar.gz;

30 tar -X tar/tarexclude -C .. -c -z -f tar/cMsg-1.0.tar.gz cMsg

31 # Use this pattern rule for all other targets

32 %:

33 @for i in $(SRC_DIRS); do \

34 $(MAKE) -C $$i -f $(MAKEFILE) $@; \

35 done;

13

Line 1: The variable MAKEFILE is defined as Makefile which means by default,

the unix makefile is run in the source directories

Lines 2-9: If BMS_OS = vxworks, then the makefile that is used in the source

directories is Makefile.vxworks-ppc. This is necessary in the package

level makefile for any cross compiling.

Line 11: The variable TOPLEVEL is defined as the top directory of the package.

This allows the generated documentation (doxygen specifically) to place

its documents in the correct location.

Line 13: The directories in which source code exists are listed in SRC_DIRS. This

allows control over what gets made and what is skipped (e.g. test

directories).

Line 15: Listing targets after .PHONY tells make that those targets don’t create a

file by the same name as the target. It also skips the implicit rule search.

This allows targets like “clean” to be run each time and to be run much

more efficiently.

Line 16: The first and default target simply executes the “all” target which does not

occur in this makefile but gets run in the next level of makefiles.

Lines 17-22: These are targets that have to do with making java code. BMS is not a

system for building java code. However, all of CODA uses a uniform

system to make java code which will be presented later.

Lines 23-27: The “doc” target generates documentation with javadoc and doxygen.

Lines 28-30: The “tar” target creates a tar file of the package.

Lines 31-35: The last item in the makefile is the most important. It is a pattern rule

which matches all targets (by using the wildcard %) except those already

defined. The way it works is the following. When the user types:

 make something ,

the target to be made is “something”. If there is no target called

“something” defined in the makefile, then it will match the given pattern

rule which matches everything. What the rule actually does is loop

through the list of source code directories and run make with the given

target in each one. For a particular directory specified (say src/regexp), the

actual command executed is:

 make –C src/regexp -f Makefile something ,

or for vxworks:

 make –C src/regexp -f Makefile.vxworks-ppc something .

The target “something” which had no match in the package level makefile

is passed down to the lowest level makefiles. Of course, it is possible that

the next level of makefile has no target called “something” either in which

case an error will occur.

14

All of the targets specified in Table 4.1.1 can be used at the package level

and will end up being run in the next level down.

7.2. Makefile.local

Software packages are often used independently of the full CODA distribution. In such

cases, BMS must be able to build the code without reference to CODA variables. To

facilitate that, in the top level of each package, a Makefile.local may be created. It is

designed to overwrite CODA variables with package variables and is automatically

included by Makefile.common if make is run at the package or bottom levels. Listed

below is Makefile.local of cMsg which is fairly self-explanatory:

If cMsg makefiles are called locally (not in a CODA build),

override CODA variables with CMSG variables. Necessary if

cMsg is made separately from CODA.

Overwrite:

CODA_HOME with CMSG_HOME

INSTALL_DIR with CMSG_INSTALL

CODA_USE64BITS with CMSG_USE64BITS

ifdef CMSG_HOME

 CODA_HOME = $(CMSG_HOME)

endif

ifdef CMSG_INSTALL

 INSTALL_DIR = $(CMSG_INSTALL)

endif

ifdef CMSG_USE64BITS

 CODA_USE64BITS = $(CMSG_USE64BITS)

endif

8. CODA-Specific Compilation
The BMS system has nothing to say about the upper level makefiles and the directory

structure of individual software packages. However, as part of the CODA software

distribution, there are a number of conventions that are enforced for the sake of unity and

simplicity. Also, the very top level makefile for all of CODA is contained in BMS and

warrants it own section of the manual.

8.1. Package Directory Structure

Each independent software package (e.g. et, evio, cMsg) must have a directory structure

that is as close as possible to the following:

15

8.1.1. Table: software package directory structure

Dir/File Name Function

build Directory in which results of a java build are stored
(class files and jar file)

build.xml Ant buildfile for building java code. Ant is used for
making all java code.

doc Directory in which to place all documentation.

doc/doxygen Directory in which to place all doxygen files

doc/javadoc Directory in which to place all javadoc files

java Directory for all java files

java/jars Directory for all jar files needed for compiling java
source code

java/org/… Directory containing all java source code (name
determined by java package name)

src Directory in which to place all sub directories which
contain source code.

src/libsrc Directory in which to place all C library code

src/libsrc++ Directory in which to place all C++ library code

16

src/execsrc Directory in which to place all generally used
executables’ source code. Package level makefile will
install these executables.

src/examples Directory in which to place all example source code.
Package level makefile will not install these
executables.

src/test Directory in which to place all test source code. Package
level makefile will not install these executables.

tar Directory in which to keep the tar file of the whole
package as well as the tarexclude file which defines
what stays out of the tar file.

Makefile Top level package makefile for unix.

Makefile.local Makefile for overriding CODA variables with package
variables (optional).

The cMsg, et, evio, and codaObject software packages have all been given this same

directory structure with, presumably, the rest of CODA to follow.

8.2. CODA makefile

The makefile for all of coda, though similar to the package level makefiles, is different

enough to warrant it own explanation. This makefile must take 2 arguments which makes

it a little more complicated. Other than as a target, the only way to pass an argument into

make is to set a variable (e.g. ARG) value on the command line with the following

syntax:

 make target ARG=value

The CODA makefile is setup to use the software package directory name as the target

and the options of Table 4.1.1 as the value of the variable ARG. For example, if the user

wanted to compile the cMsg package stored in the “cMessage” directory to do a

“distClean”, then the command would be:

 make cMessage ARG=distClean

If the target is not specified, the makefile will make all the directories listed internally as

comprising CODA. The makefile looks for these target directories in CODA_HOME.

Take a look at the actual file (minus the irrelevant parts):

1 MAKEFILE = Makefile

2 # if using vxworks, use different set of the lowest level makefiles

3 ifeq ($(BMS_OS), vxworks)

4 ifndef BMS_ARCH

5 $(error "Need to define BMS_ARCH if using BMS_OS = vxworks")

6 endif

7 endif

17

8 ifndef CODA_HOME

9 $(warning "Should define CODA_HOME")

10 # assume we're in BMS dir & also at the top level of CODA distribution

11 CODA_HOME = ..

12 endif

13 # list of possible targets

14 TARGETS = cMsg evio et

15 .PHONY : first help tar

16 first: $(TARGETS)

17 tar:

18 -$(RM) coda-3.0.tar.gz;

19 tar -X tarexclude -C .. -c -z -f coda-3.0.tar.gz coda

20 # Use this pattern rule for all other targets

21 %:

22 cd $(CODA_HOME)/$@; $(MAKE) -f $(MAKEFILE) $(ARG);

Line 1: The variable MAKEFILE is defined as Makefile which means that

Makefile in the top level of each software package gets run.

Lines 2-7: If BMS_OS = vxworks, then make sure that BMS_ARCH is defined so

that the bottom level BMS makefiles work properly for any cross

compiling.

Lines 8-12: The variable CODA_HOME should be defined as CODA’s top directory.

This allows the targets (names of package directories) to be found since

the target names are assumed not to be absolute pathnames.

Line 14: A listing of all package directories is contained in TARGETS. This allows

control over what gets made and what is skipped by default.

Line 15: Listing targets after .PHONY tells make that those targets don’t create a

file by the same name as the target. It also skips the implicit rule search.

This allows make to be run much more efficiently.

Line 16: The first and default target is TARGET - the list of all CODA directories.

Thus all of CODA will be made by default.

Lines 17-19: The “tar” target creates a tar file for all of CODA.

Lines 20-22: The last item in the makefile is the most important. It is a pattern rule

which matches all targets (by using the wildcard %) except those already

defined. For example, when the user types:

 make packageDir ARG=install ,

the target to be made is “packageDir”. If there is no target called

“packageDir” defined in the makefile, then it will match the given pattern

rule which matches everything. What the rule actually does is change

directories to CODA_HOME/packageDir and run make with the target

“install”. So in this case the actual commands executed are:

18

cd $(CODA_HOME)/packageDir

make -f Makefile install ,

By default then, the makefile goes to each directory and runs make on

Makefile.

8.3. JAVA

Ant is the way to go for building java code. It compiles java code an order of magnitude

faster than make and is much more powerful as well. Ant requires a build file in XML

format which plays much the same role that a makefile does for make. By default ant

looks for a file called build.xml. All CODA packages that contain java code use ant and

each contain a very similar build file called build.xml in its top level directory. The user

can simply copy an existing build.xml file from et or cMsg and make a few small

corrections in order to create one for a new software package. Following is build.xml

from cMsg with some commentary:

1 <?xml version="1.0" ?>

2 <project name="cMsg" default="compile" basedir=".">

3 <!-- Project-wide settings -->

4 <!-- Directories -->

5 <property name="src.dir" value="java" />

6 <property name="build.dir" value="build" />

7 <property name="build.classes" value="${build.dir}/classes" />

8 <property name="build.lib" value="${build.dir}/lib" />

9 <property name="doc.dir" value="doc/javadoc" />

10 <!-- Classpath -->

11 <path id="classpath">

12 <fileset dir="java/jars">

13 <include name="**/*.jar" />

14 </fileset>

15 </path>

16 <!-- Version -->

17 <property name="cMsg.version" value="1.0" />

18 <!-- Debug -->

19 <property name="javac.debug" value="off" />

20 <!-- Targets -->

21 <!-- Help -->

22 <target name="help">

23 <echo message="Usage: ant [ant opts] <target1> [targ2 | targ3 | ...]" />

24 <echo message="" />

25 <echo message=" targets:" />

26 <echo message=" compile - compile java files" />

27 <echo message=" clean - remove class files" />

28 <echo message=" cleanall - remove all generated files" />

29 <echo message=" jar - compile and create jar file" />

30 <echo message=" all - clean, compile and create jar file" />

19

31 <echo message=" javadoc - create javadoc documentation" />

32 <echo message=" prepare - create necessary directories" />

33 </target>

34 <!-- Environment -->

35 <target name="env">

36 <echo message="Ant environment:" />

37 <echo message="" />

38 <echo message=" src.dir = ${src.dir}" />

39 <echo message=" build.dir = ${build.dir}" />

40 <echo message=" build.lib = ${build.lib}" />

41 <echo message=" build.classes = ${build.classes}" />

42 <echo message=" doc.dir = ${doc.dir}" />

43 <echo message=" javac.debug = ${javac.debug}" />

44 </target>

45 <!-- Prepare things by creating directories -->

46 <target name="prepare">

47 <mkdir dir="${build.dir}" />

48 <mkdir dir="${build.classes}" />

49 <mkdir dir="${build.lib}" />

50 </target>

51 <!-- Clean by removing class files -->

52 <target name="clean" description="Remove all class files">

53 <delete failonerror="no" >

54 <fileset dir="${build.classes}" includes="**/*.class" />

55 </delete>

56 </target>

57 <!-- Clean by removing build & doc directories -->

58 <target name="cleanall" depends="clean" description="Remove all generated files.">

59 <delete dir="${build.dir}" failonerror="no" />

60 <delete dir="${doc.dir}" failonerror="no" />

61 </target>

62 <!-- Compile all source -->

63 <target name="compile" depends="prepare" description="Compiles all source code.">

64 <javac destdir="${build.classes}" debug="${javac.debug}" >

65 <src path="${src.dir}" />

66 <classpath refid="classpath" />

67 </javac>

68 </target>

69 <!-- Create Jar file -->

70 <target name="jar" depends="compile" description="Generates jar file.">

71 <jar jarfile="${build.lib}/cMsg-${cMsg.version}.jar">

72 <!-- Dont include Consumer, Producer, and StartET.class files -->

73 <fileset dir="${build.classes}" excludes="*.class" />

74 </jar>

75 </target>

76 <!-- Clean, compile, and create jar -->

77 <target name="all" depends="clean,jar" description="Cleans, compile, & builds jar

file." />

78 <!-- Javadoc -->

79 <target name="javadoc" description="Create javadoc.">

20

80 <mkdir dir="${doc.dir}" />

81 <javadoc packagenames="org.jlab.coda.*"

82 sourcepath="java"

83 destdir="${doc.dir}"

84 use="true" >

85 <classpath refid="classpath" />

86 </javadoc>

87 </target>

88 </project>

Line 2: Define the project name, the base directory that all other defined

directories are relative to, and the default target.

Lines 4-9: Define some useful directories. src.dir is the directory containing the

source, build.dir is the directory containing all the files generated from

java like class & jar files, build.classes is the directory containing all the

class files, build.lib is the directory containing the generated jar file, and

doc.dir is the directory containing the generated javadoc.

Lines 11-15: A path is defined which is later used as a classpath for compiling. It tells

javac to look in java/jars for all needed jar files.

Lines 17, 19: Useful variables are defined.

Lines 22-33: The help target is defined. Typing ant help will print out the usage

information for this build file.

Lines 35-44: The env target is defined. Typing ant env will print out the variables used

in this build file.

Lines 46-50: The prepare target is defined. This creates all the necessary directories for

the build.

Lines 52-56: The clean target is defined. Typing ant clean deletes all class files in and

under the build.classes directory.

Lines 58-61: The cleanall target is defined. Typing ant cleanall will delete the whole

build directory and the javadoc directory – basically all generated files.

Lines 63-68: The compile target is defined which is also the default target. Typing ant

conpile or just ant will compile all the java source code into class files and

store it in build.classes.

Lines 70-75: The jar target is defined. Typing ant jar compiles and creates a jar file of

all the class files created..

Line 77: The all target is defined. Typing ant all will clean, compile, then make the

jar file.

Lines 79-87: The javadoc target is defined. Typing ant javadoc will generate all the

javadoc documentation.

All of the targets have an attribute called depends which defines which targets are

prerequisite. A full description of the powers of ant is best left to a book on the subject.

The following table lists the targets and what they do.

21

8.3.1. Table: ant targets and actions

Ant Command Action

ant, ant compile Compile all java source code

ant help Print out usage

ant env Print out value of build file variables

ant clean Delete all class files

ant cleanall Remove build and javadoc directories

ant jar Compile and create jar file

ant all Do clean, compile, then create jar file

ant javadoc Create javadoc documentation

ant prepare Create necessary directories

