
JEFFERSON LAB

Data Acquisition Group

cMsgDeveloper’s
Guide

Version

J E F F E R S O N L A B D A T A A C Q U I S I T I O N G R O U P

cMsg Developer’s Guide

Elliott Wolin
wolin@jlab.org

Carl Timmer
timmer@jlab.org

01-Jun-09

 Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave

Newport News, VA 23606
Phone 757.269.5130 • Fax 757.269.6248

2

Table of Contents

1. Introduction... 3

1.1. Abstract API .. 3

1.2. Framework .. 4

1.3. Proxy system.. 4

2. Framework .. 6

2.1. Java ... 7

2.2. C .. 8

2.2.1. Static.. 8

2.2.2. Dynamic .. 8

3. Proxy Server...10

INTRODUCTION

3

1. Introduction

In the following we describe how to customize the cMsg package by adding new domains
and subdomains. Users of this guide should be familiar with the basic concepts and
strategies of the cMsg package. See the cMsg User’s Guide for more information.
As noted in the user’s guide, the cMsg package can be used at a number of levels:

 Abstract API to an arbitrary, underlying message system
 Framework for implementation of underlying messaging systems
 Proxy system to connect to remote messaging systems
 Full implementation of publish/subscribe and other messaging systems

This guide describes how to work with the first three levels above. The user’s guide
discusses the fourth level, i.e. how to use the built-in messaging systems provided with
the cMsg package.

1.1. Abstract API

At the most basic level the cMsg API can simply be implemented as a façade on top of an
arbitrary, asynchronous publish/subscribe or synchronous peer-to-peer messaging system.
This approach may be useful since user code need not change if the underlying
messaging system is changed; however, this will not be discussed further as there is little
to say. Look at the diagram below to see a graphical view of how the API is
implemented in this fashion. Far more powerful customizations of the cMsg package are
described in the next two sections. See the API docs for details of the cMsg API.

Section

User Level API: cMsgConnect(UDL, …)

cMsgConnect

Software Library – write/get your own

INTRODUCTION

4

1.2. Framework

A more interesting use of the cMsg package is as a framework for implementation of
user-written domains. The cMsg client framework allows new domains to be easily
added, dynamically in Java (1.5 or later), and dynamically or statically in C. The
framework supports connection of clients to multiple domains, keeps track of separate
callbacks and subscriptions, etc. Developers simply have to implement a basic set of
messaging functions via an adapter class or interface in Java, or via a set of function
pointers in C. See the graphical example below and Section 2 for details.

1.3. Proxy system

The most powerful customization of the cMsg package involves adding new subdomains
to the built-in cMsg domain. In the cMsg domain a proxy server (provided) actually
implements the messaging system and does all the work. The cMsg domain client code
simply transports messages, subscription requests, etc. to the server. This is done in a
completely transparent manner so that the client does not know that a remote server is
involved.

Developers implement the messaging system using a subdomain interface (Java 1.5 or
later) which is used by the cMsg domain server to actually do the work. Furthermore,
subdomain classes can be loaded dynamically by the server as long as the class files are
in the server classpath.

The major advantage of using proxy implementations is that the client nodes do not need
access to licenses, libraries, etc. that are specific to the underlying messaging system.

Domains

File connect

User Level API: cMsgConnect(UDL, …)

Parse UDL (acts like multiplexor)

cMsg connect RC connect

myDomain’s
connect

Developer writes library or
Java class

INTRODUCTION

5

These need only be available on the machine where the server runs. For example, access
to messaging systems that are not available under VxWorks or on Solaris can be made
available to VxWorks or Solaris clients through the proxy server. See the example below
and Section 3 for details.

cMsg
Domain
Server

cMsg
subdomain

client 1

CA

cMsg
subdomains

cMsg
subdomain

client N

cMsg protocol

cMsg
protocol

CA
subdomain

client 1

cMsg protocol

IOC

CA
protocol

My
app

cMsg
protocol

My
protocol

My
subdomain

My
subdomain

client

FRAMEWORK

6

2. Framework

Let’s begin by describing the general way in which both Java and C domains are
structured. The cMsg package acts as a multiplexer. The top level user interface simply
redirects the API calls to a specific implementation or domain. This is done simply by
parsing the UDL in the “connect” call, determining the domain from the UDL and then
passing the calls on to the domain level. The figure below shows graphically what
happens to the connect call, but the same applies to all API calls.

There are some domains which exist only in Java and those that exist in C, C++, and
Java. A domain with versions written in multiple languages must all use the same
communication protocol. Another important note for the domain developer is that
because clients can be multithreaded, there is the possibility that each function or method
may be called simultaneously by different threads. In other words, code which
implements a domain must be thread-safe.

Section

Top Level API

parse UDL & find domain
call the domain specific connect

Client Code
connect (UDL, …)

CA Domain
connect

cMsg Domain
connect

file Domain
connect

FRAMEWORK

7

2.1. Java

In order to create a new cMsg domain that plugs into the cMsg client framework,
developers need to create a class that implements the cMsgDomainInterface interface or
(much easier) extends the domain adapter class cMsgDomainAdapter. Both of these java
files are in the <cMsg dir>/java/org/jlab/coda/cMsg/common directory. The best way to
learn how to do this is to view the programmer’s guide (the javadocs). The comments in
the javadocs give a nice explanation about what each class and method is about. For
examples of domains look at the domains listed in the table below.

Start by choosing a unique (case insensitive) name for your domain. Already existing
names and their associated implementations are in the following table.

Domain Name Class File Name
cMsg org/jlab/coda/cMsg/cMsgDomain/client/cMsg.java
rc org/jlab/coda/cMsg/RCDomain/RunControl.java
rcm org/jlab/coda/cMsg/RCMulticastDomain/RCMulticast.java
rcs org/jlab/coda/cMsg/RCServerDomain/RCServer.java
TCPS org/jlab/coda/cMsg/TCPSDomain/TCPS.java
file org/jlab/coda/cMsg/FileDomain/File.java
CA org/jlab/coda/cMsg/CADomain/CA.java

Once you have a unique name, the UDL to access your domain’s server will look like:
cMsg:<domain name>://<domain specific stuff>.

In your domain-implementing class, you will have access to strings containing both the
full UDL and just the <domain specific stuff>. Parse the UDL and pull out all necessary
information. Usually information on how to reach the server is contained in the <domain
specific stuff> as well as anything else you find necessary.

After the new domain is created, the question remains as to how a cMsg client can access
it. The means by which this is achieved can be seen by looking inside the
org/jlab/coda/cMsg/cMsg.java file. The domains listed above are provided with the
software package and their location is hard coded into that file in the
“createDomainConnection” method. The user is free, of course, to edit cMsg.java to
include new domains and then recompile. However, an easier alternative is to give a flag
to the JVM when running the client. This flag must be of the form:

-D<myDomain>=<myDomain’sClassName>,
where the specified class must be in your classpath. For example if I have a domain
called “pow” and that is implemented in a java file whose full name (including package)
is bam.java and my client code is in a class called crash.java, then I would run my client
with a command like:

java –Dpow=bam crash

Note that domain names are not case sensitive, but dots are not allowed in domain
names.

FRAMEWORK

8

2.2. C

Similarly, developers need to provide a library that contains an appropriate set of
functions that implement the API in the C language. In this case, new domains may be
added either dynamically or statically.

2.2.1. Static

If adding statically, a bit of code editing must be done. In the C code directory there is a
file called cMsgPrivate.h. This file contains 2 structures that must be filled –
domainFunctions and domainTypeInfo. To get a good idea of how to do this, see the
doxygen html pages. A good example of a functioning domain can be found in
cMsgDomain.c which is the C implementation of the cMsg domain. Alternatively, a
dummy domain implementation exists in src/libsrc/dummyDomain.c and can be used as a
template – just fill in the functions with your code and change the “dummy” string with
your domain name. This works in conjunction with a dummy client found in
src/examples/dummy.c

Just follow these steps:

1. Create and fill a structure of type “domainFunctions” with pointers to all the
functions implementing the cMsg API.

2. In the global space, create and fill a structure of type “domainTypeInfo” in which the
first element is a string containing the name of the domain and the second element is
the structure with all the function pointers. Make sure the name of this structure is
globally unique.

3. Now add this structure to the cMsg.c file declaring it extern. For example,
extern domainTypeInfo myDomainTypeInfo;

4) Again in cMsg.c, add it to an existing array of domainTypeInfo structures called
dTypeInfo. To do this, go to the function registerPermanentDomains and add 2 lines:
 dTypeInfo[n].type = (char *)strdup(myDomainTypeInfo.type);
 dTypeInfo[n].functions = myDomainTypeInfo.functions;

where n is the next available integer.
5) Finally, recompile.

2.2.2. Dynamic

If adding dynamically, a shared library must be created. In the shared library, certain
functions must be present. The following is a list of the necessary functions:

/* Prototypes of the 25 functions which implement all the cMsg tasks. */
int cmsg_<domain>_connect(const char *myUDL, const char *myName,

FRAMEWORK

9

 const char *myDescription, const char *UDLremainder, void **domainId);
int cmsg_<domain>_reconnect(void *domainId);
int cmsg_<domain>_send(void *domainId, void *msg);
int cmsg_<domain>_syncSend(void *domainId, void *msg, int *response);
int cmsg_<domain>_flush(void *domainId);
int cmsg_<domain>_subscribe(void *domainId, const char *subject, const char *type,
 cMsgCallbackFunc *callback, void *userArg,
 cMsgSubscribeConfig *config, void **handle);
int cmsg_<domain>_unsubscribe(void *domainId, void *handle);
int cmsg_<domain>_subscriptionPause (void *domainId, void *handle);
int cmsg_<domain>_subscriptionResume(void *domainId, void *handle);
int cmsg_<domain>_subscriptionQueueClear(void *domainId, void *handle);
int cmsg_<domain>_subscriptionQueueCount(void *domainId, void *handle, int *count);
int cmsg_<domain>_subscriptionQueueIsFull(void *domainId, void *handle, int *full);
int cmsg_<domain>_subscriptionMessagesTotal(void *domainId, void *handle,
 int *total);
int cmsg_<domain>_subscribeAndGet(void *domainId, const char *subject,
 const char *type, const struct timespec *timeout,
 void **replyMsg);
int cmsg_<domain>_sendAndGet(void *domainId, void *sendMsg,
 const struct timespec *timeout, void **replyMsg);
int cmsg_<domain>_monitor(void *domainId, const char *command, void **replyMsg);
int cmsg_<domain>_start(void *domainId);
int cmsg_<domain>_stop(void *domainId);
int cmsg_<domain>_disconnect(void *domainId);
int cmsg_<domain>_shutdownClients(void *domainId, const char *client, int flag);
int cmsg_<domain>_shutdownServers(void *domainId, const char *server, int flag);
int cmsg_<domain>_setShutdownHandler(void *domainId, cMsgShutdownHandler *handler,
 void *userArg);
int cmsg_<domain>_isConnected(void *domainId, int *connected);
int cmsg_<domain>_setUDL(void *domainId, const char *udl, const char *remainder);
int cmsg_<domain>_getCurrentUDL(void *domainId, char **udl);

where “<domain>” is the domain name in all lowercase letters. Files containing these
functions must be compiled into a shared library with the specific name
libcmsg<domain>.so where domain is the domain name in all lowercase letters. In this
way, a cMsg application will parse a given UDL, find the domain, and know which
library to dynamically load. If the library is in the LD_LIBRARY_PATH environmental
variable, then everything should be fine.

To reiterate, just follow these steps:

1. Create a file or files of the above listed functions.
2. Compile everything into a shared library with the name libcmsg<domain>.so, domain

being all lowercase.
3. When compiling your cMsg application that uses this domain, link it with this shared

library as well as against libcmsg.so and libcmsgRegex.so.
4. Run your application.

An example is provided in 2 files: dummyDomain.c and dummy.c. As the name
indicates, the dummyDomain.c file implements an example domain which does nothing
except print something out each time a function is called. The file dummy.c implements
an application which uses the dummy domain. Using these 2 files as a template should
make domain development quite simple.

RUN CONTROL CLIENTS

10

3. Proxy Server

The cMsg domain is implemented with a server. All client API calls are directed to this
server which carries out the desired actions. Because of the way this server is structured,
it is also possible to use it as a proxy server. The part of the server which receives,
deciphers, and queues up requests is distinct from the part which carries out the requests.
In fact, for a single client, all requests are carried out by a single object which implements
a specific interface – the cMsgSubdomainInterface. In actual practice it is easier to
subclass cMsgSubdomainAdapter which already implements some minimum
functionality in which default methods return “Not Implemented” for all messaging
functions. Instead of listing and describing all methods of the interface, it’s easier to read
the javadoc where such is already done for a complete description of the interface.

The object that handles this real functionality we call a subdomain handler with the idea
that different classes that implement this interface can handle the messages in their own
way (their own subdomain). Creating a new cMsg subdomain is the most powerful way
of customizing cMsg. Messages published to the cMsg domain are transparently
transferred from the client to the server, then passed on to an instance of a subdomain
class for transport and delivery.

The diagram below is a graphical representation of what goes on. There are 2 clients in
yellow – client A and client B. The cMsg domain server is the large oval in purple which
contains 1 section for receiving requests and 3 different subdomains. Each subdomain is
created when a client connects to the cMsg domain server and that specific subdomain.
Thus both clients have already connected to cMsg domain & subdomain X. Client B has
subscribed to messages of a certain subject which is shown by green arrows and is
ultimately taken care of by the handleSubscribe method of the subdomain. Client A has
sent messages with that same subject and is shown with blue arrows and is ultimately
taken care of by the handleSend method. Finally, client B received those messages from
the subdomain handler in a callback.

Section

RUN CONTROL CLIENTS

11

The developer needs to be aware of one very pertinent fact. Clients may connect to the
name server in a manner in which there will be several threads processing a single
client’s requests on the domain server’s request queue. Thus, all methods in the
subdomain handler object must be thread-safe. It is also possible that more than one
client of a particular subdomain may be simultaneously connected, thus the subdomain
handler class must be careful in handling class static data – i.e. it must be thread-safe.

There are several subdomains already existing that will serve as templates for any
developer. There are subdomains for talking to Channel Access (CA), a database (DB),
smart sockets (SmartSockets), queuing messages in a database (Queue), queuing
messages in files (FileQueue), and logging messages to a file (LogFile). There is also a
dummy subdomain (Dummy) that provides a template.

Client A Code
connect (cMsg domain/subdomain X, …)
send(subject, message, …)

cMsg subdomain

Request receiving,
deciphering, queuing

Client B Code
connect (cMsg domain/subdomain X, …….)
subscribe(subject, callback, …)

cMsg Domain Server

CA subdomain

X subdomain
handleSubscribe(subject)
handleSend(subject, message)

callback

