
The ET System – High Speed Event Transfer
and Distribution via Shared Memory and

Networks
Elliott Wolin, Carl Timmer, D Abbott, V Gyurjyan, G Heyes, E Jastrzembski

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

Conclusions
The ET system implements high-speed data sharing among processes on the
same node via shared memory, and high-speed data transfer between
processes on separate nodes. Data movement is minimized whenever
possible.

A rich variety of connection, selection, and transfer modes is implemented,
allowing for the extensive tailoring and customization required by state-of-
the-art DAQ systems. The ET system API is fairly simple and
straightforward, allowing non-experts to use ET.

The ET system has formed the foundation for data transfer and sharing for
all JLab high-speed DAQ systems for many years, and will continue to do so
at the upgraded 12 GeV facility at JLab.

Downloads
Download and give ET a try! You can get your free copy today at

ftp://ftp.jlab.org/pub/coda/ET:
Carl Timmer, (757) 269-5130, timmer@jlab.org, or

Elliott Wolin, (757) 269-7365, wolin@jlab.org

Advantages
• Runs on Linux & Solaris with client library on vxWorks
• Java version available which interoperates with C version
• Java monitoring GUI
• Code is reentrant (run multiple copies on one machine)
• Overhead for handling events is negligible
• Speed limited only by network bandwidth and machine memory copy

speed

Performance

Introduction
The ET (Event Transfer) system transfers high-volume, high-speed experimental data (events) from process to process within a single
computer while also working seamlessly across a network.
ET is designed for use is in high-speed DAQ systems, where data typically moves in a single direction, from front-end hardware to
permanent storage. Along the way the data is usually manipulated or modified, often by a chain of processes on a single node.
The ET system is quite general, and can be used in any application that involves transfer of data between threads/processes.

ET Data Transfer Model
Data is stored in shared memory, and transfer of data from one process to another on a single node is via transfer of a simple pointer
into the shared memory, so no data is copied. Remote nodes access ET data via TCP/IP, and data is only copied when necessary (e.g. a
monitoring process may only need a read-only copy, whereas other processes may modify the data and send it back).
The ET API is independent of whether shared memory or network transfer is used, allowing for run-time determination of the data
transfer architecture.

List of pointers to buffers (events) available for use.

Producer of data grabs some events, fills them with
data and puts them back.

A conductor thread takes the producer’s events and
puts them into the next station’s input list.

The ET system and local clients have threads that
monitor each other’s heartbeats and know if

they’re dead or alive.

ET clients can use shared memory if local or they can
(transparently) use the network to get and put

events.

Events have settable header fields which can be used to
hold metadata. Once events are past the last station,
they are returned to the pool at GrandCentral station
to be used again.

Stations of various configurations can be added at
runtime. There are many different configuration
options. For example, they can be configured to filter
events on user criteria.

Stations are shown here in series. They can also be
placed in parallel. When parallel, events can be
distributed among such stations in round robin
fashion, or they can be distributed to ensure equally
occupied input lists for load balancing.

ET clients can discover ET systems by broadcasting
and/or multicasting in order to connect to it, as well
as connecting directly.

