

Physics Division -- Fast Electronics Group

Description and Instructions

For the

FADC Pulse Compression

May 2018

Hai Dong

1. Introduction

This document specifies the pulse compression for FLASH250 firmware. In addition to implement the pulse compression algorithm as described in FADC Compression Algorithm document by Gaggik Gavalianit also manages other functions such as either passing Event Header Data or suppressing Pulses Parameter Data. The data output format will be slightly different than the document description to accommodate the header and ADC channel information to.

2. Pulse Compressing Algorithm

a. Description

The algorithm takes in N (<u>in multiple of 16</u>) 12-bits samples of ADC, compresses in group of 16 samples, and write out results in 32 bits format to be transfer to the VME bus. The steps are as follow:

- i. Find the minimum values of the pulses (Raw Data Word 2-N) Only bits 11-0 are used → Min Value
- **ii.** Subtract the minimum value of the pulse from the sample \rightarrow Sub Values
- **iii.** Isolate lower 4 bits and upper 8 bits of Sub Values into two arrays.
- **iV.** Create an array of 32 bits words contain lower 4 bits \rightarrow Low Array
- V. Create an array of 32-bits words contain non-zero upper 8 bits of Diff Value → Up array
- **VI.** Write Min Value, Low Array, Up Array, the number of zero before 1st non-zero upper 8 bits, and the number of non-zero upper 8-bits in the format shown below

b. Compressing Algorithm Output for FLASH250 Table 1 shows the data output of the compressing algorithm for FLASH250

_

Word Number	Function			
0	Event Header			
1	Trigger Time Word 1			
2	Trigger Time Word 2			
3	ADC Channel A Header (of 1 st pulse)			
4	ADC Channel A Low Array #7-0. Low nibble is in bit 3-0.			
5	ADC Channel A Low Array #15-8.			
6	ADC Channel A Up Array #x-0. Low byte is in bit 7-0. If number of byte <			
	4, unused bytes are zero. x is the last byte			
:				
:				
N/4 + 7 (N=number of	ADC Channel A Up array of last 4 byte (or byte). Unused bytes are zeroes			
non-zero 8-bits)				
N/4 + 8	ADC Channel A Header (of 2 nd pulse if existed)			
N/4 + 9	ADC Channel A Low Array #7-0. Low nibble is in bit 3-0.			
•				
:				
K = Depend on	ADC Channel B Header (of 1 st pulse)			
Number of Pulses in				
Channel A				
K +1	ADC Channel B Low Array #7-0. Low nibble is in bit 3-0.			
K + 2	ADC Channel B Low Array #15-8.			
K + 3	ADC Channel B Up Array #x-0. Low byte is in bit 7-0. If number of byte <			
	4, unused bytes are zero. x is the last byte			
:				
:				
N/4 + 6 + K	ADC Channel B Header (of 2 nd pulse if existed)			
:				
:				
Depend on number of	Last ADC Channel Up Array of last 4 bytes			
channel having pulse				
and number of pulses				
in each channel				
Last Word	Event Trailer			

 Table 1: Data Output Format 36-bits (BITS 35-32 ARE EITHER PASSED THROUGH or Zero)

 Word Number

c. ADC Channel X Header

Bits 35-32	=> 0000
Bits 31	=> 1 (beginning of compress data of group of 16 samples)
Bits 30-27	=> 1000 (Compress Data)
Bits 26-23	=> ADC Channel Number
Bit22	=> ,0,
Bit21	=> => Number of leading zero bytes in Up Array(bit 4)
Bit 20	=> Minimum Value bit 12 (overflow)
Bits 19-8	=> Minimum Value bits 11-0
Bits 7-4	=> Number of leading zero bytes in Up Array(bits 3-0)
Bits 3-0	=> Number of non-zero bytes in Up Array

3. Example Showing Data Output of each stage of compression

The following example shows raw data from ADC channel 1 and ADC channel 16 and the outputs from each compression step

- **a.** Chan one 32 Samples Inputs in Decimal (1 short and 1 long pulses)
 - **1.** Sample Number432
 - **ii.** 100 101 104 99 900 1000 2000 102 100 98 100 100 100 100 100 100

1

0

- **iii.** 99 106 88 500 850 900 1000 900 800 700 600 500 450 400 350 300
- **b.** Chan 1 Minimum Value =
 - **i.** <u>98</u> for 1^{st} 16 samples
 - **ii.** <u>88</u> for 2^{nd} 16 samples
- **c.** Chan 1 Subtract Min Value from sample in decimal
 - **i.** For 1st 16 samples
 - 2 3 6 1 802 902 1902 4 2 0 2 2 2 2 2 2 in decimal
 - 2361 322 386 76E 4 2 0 2 2 2 2 2 2 in hex
 - For ^{2nd} 16 samples
 11 18 0 412 762 812 912 812 712 612 512 412 362 312 262 212 in decimal
 B 12 0 19C 2FA 32C 390 32C 2C8 264 200 19C 16A 138 106 D4
- **d.** Chan one Low (4 bits) Array
 - i. For 1^{st} 16 samples 20222222236126E4
 - ii. For 2nd 16 samples <u>840CA864</u> <u>B20CAC0C</u>
- **e.** Chan one Up (4 bits) Array
 - **i.** For 1st 16 samples **00 80 90 19**
 - **ii.** For 2nd 16 samples
 - <u>16 13 10 0D</u> <u>2C 26 20 19</u> <u>2F 32 39 32</u>
 - <u>00 01 00 19</u>
- f. Number of leading zero and non-zero element of Up Array
 - **i.** $1^{st} 16 \text{ samples} = 4 ; 3$
 - **ii.** 2nd 16 samples = 1 : 15
- **g.** Compression efficiency
 - **i.** Input = 16 Sample * 12 bits/sample = 192 bits
 - **ii.** Over Head output:
 - **1.** Low Array = 64 bits
 - **2.** Min Value = 12 bits
 - **3.** NumOfZero = 8 bits
 - **4.** Total = 84 bits
 - **iii.** 1st 16 samples
 - **1.** Up Array = 24
 - **2.** Total bits = 24 + 84 = 108
 - **3.** Efficiency = (1 108/192) * 100 = 43.75%

- **iv.** 2^{nd} 16 samples
 - **1.** Up Array = 120 bits
 - **2.** Total bits = 204 bits
 - **3.** Efficiency = -6.25%
- **v.** Total Efficiency for Channel 1 = 37.5%
- h. Channel sixteen 32 Samples Input in Decimal (1 long pulse)
 - i. Sample number
 - ii. 213 212 213 213 213 213 212 212 500 600 700 800 800 800 800 800

3

2 1

0

- iii. 700 600 500 400 213 212 213 213 213 213 212 212 213 212 213 200
- i. Channel 16 minimum value
 - i. 1st 16 sample = <u>212</u>
 - ii. 2^{nd} 16 sample = <u>**200**</u>
- j. Chan 1 Subtract Min Value from sample in decimal
 - i. 1st 16 sample
 - 1 0 1 1 1 1 0 0 288 388 488 588 588 588 588 588 in decimal
 - 1 0 1 1 1 1 0 0 120 184 1E8 24C 24C 24C 24C 24C in hex
 - ii. 2nd 16 sample
 - 500 400 300 200 13 12 13 13 13 13 12 12 13 12 13 0 in decimal 1F4 190 12C C8 D C D D D D C C D C D 0 in hex
- **k.** Chan one Up (4 bits) Array
 - i. 1st 16 samples
 - <u>048CCCCC</u>
 - <u>10111100</u>
 - ii. 2nd 16 samples
 - DDCCDCD0
 - 40 C 8 D C D D

I. Chan one Up (4 bits) Array

- i. 1st 16 samples
 - <u>58 58 58 58</u>
 - <u>28 38 48 58</u>
- ii. 2nd 16 samples
 - <u>1F 19 12 C</u>
- m. Number of leading zero and non-zero element of Up Array
 - i. 1st 16 samples = <u>8 ; 8</u>
 - ii. 2nd 16 samples = <u>0 ; 4</u>
- **n.** Compression efficiency
 - i. 1st 16 samples = [1- (148/192)]*100 = %22.91
 - ii. 2^{nd} 16 samples = $[1 (116/192)]^*100 = %39.58$
 - iii. Total = %62.45

o. 32-bits Data Output

i.	Name	Value
ii.	Event Header	Pass through
iii.	Trigger Time #1	Pass through
iv.	Trigger Time #2	Pass through
ν.	Compress Data Header	0000020
vi.	Ch one 1 st 16-sample header	00206240
vii.	Ch one 1 st 16 sample low array	20222222
viii.	Ch one 1 st 16 sample low array	23512664
ix.	Ch one 1 st 16 sample up array	00800019
х.	Ch one 2 nd 16-sample header	0020581F
xi.	Ch one 2 nd 16 sample low array	840CA864
xii.	Ch one 2 nd 16 sample low array	120CAC0C
xiii.	Ch one 2 nd 16 sample up array	1613100D
xiv.	Ch one 2 nd 16 sample up array	2C262019
XV.	Ch one 2 nd 16 sample up array	2F323932
xvi.	Ch one 2 nd 16 sample up array	00010019
xvii.	Ch sixteen 1 st 16-sample header	01E05884
xviii.	Ch sixteen 1 st 16 sample low array	048CCCCC
xix.	Ch sixteen 1 st 16 sample low array	10111100
XX.	Ch sixteen 1 st 16 sample up array	58585858
xxi.	Ch sixteen 1 st 16 sample up array	28384858
xxii.	Ch sixteen 2 nd 16-sample header	01E0c804
xxiii.	Ch sixteen 2 nd 16 sample low array	y DDCCDCD0
xxiv.	Ch sixteen 2 nd 16 sample low array	y 40C8DCDD
XXV.	Ch sixteen 2 nd 16 sample up array	1F19120C
xxvi.	Event Trailer	Pass through

р.

4. Firmware Architecture

a. Top Level Firmware Architecture

Figure 1 shows the top level firmware architecture.

There are 3 Modes of operation:

- Mode = "00" \rightarrow Data In is Pass through to Data Out.
- Mode = "01" \rightarrow Data In is output to Data Out and is followed by Compress Data. In this mode, the number of active channel * number of ADC sample (PTW + 1) has to be less than 1601. This mode only run when PTW + 1 is multiple of 16
- Mode = "10" → Only Compress Data is output to Data Out. This mode only run when PTW + 1 is multiple of 16

When DataValid is high DataIn is accepted.

When PTW + 1 (number of sample) is <u>is NOT a multiple of 16</u> and Enable is high, CE Error is high. PTW is the user programmable parameter.

Figure1 : Top Level Firmware Architecture

b. Compressing Architecture

Figure2 shows the Compressing Architecture (CA). The behavior of the CA depends on bits Comp Enable, PTW, and DataIn 35-27 as shown in Table 1 and Table 2.

Table 2: Behavior	of CA when	Data Valid is 1
-------------------	------------	-----------------

Mode	PTW	DataIn 31-27	CA Error	CA Fifo WrEn	CA Data
00	Х	Х	0	1	DataIn
01	Not multiple of 16	X	1	1	Only DataIn
01	Multiple of 16	See Table 3	0	1 for Datain to CA data See Table 3 for compress data	DataIn. Compress Data
10	Not multiple of 16	x	1	0	No output
10	Multiple of 16	See Table 3	0	See Table 3	See Table 3

Table 3: Behavior of CA when Data Valid is 1, Mode is "10" and PTW is even

Data In 35-27	CA Fifo	CA Data	Comment
	WrEn		
0000 1 0010	1	DataIn	Event Header
0000 1 0011	1	DataIn	Trigger Time Word 1

0000 0 0000	1	DataIn	Trigger Time Word 2 (only when	
			immediately follow 1 0011	
0000 1 0100	1	DataIn	Window Raw Data Word 1. Contains	
			(PTW+1) and channel number.	
0000 0 0000	1	Compress Engine	Window Raw Data Word 2 - N	
0000 1 1001	0	DataIn	Pulse Parameter Word 1	
0000 1 1xxx	0	DataIn	Pulse Parameter Word 2(only when	
			immediately follow 1 1001	
0000 0 0000	0	DataIn	Pulse Parameter Word 2 (only when	
			follow 1 1001 by 1 word)	
0010 1 1101	1	DataIn	Event Trailer	

C. Compressing Engine

The Compressing Engine executes the <u>Pulse Compressing Algorithm</u> as described in SECTION 2 above

D. Steps to input data into Firmware

- Select Mode
 - 00 = pass through;
 - 01 = pass through and follow by compress data
 - 10 = compressing data only
- Set PTW
- When Data Valid is one, DataIn will be acted upon. In other word Data Valid is used as Data strobe signal
- The first 3 words HAS to be header, trigger time 1, trigger time 2
- The last word has to be End of Event