
Data Acquisition at Jefferson Lab

David Abbott
Data Acquisition Support

Experimental Nuclear Physics
(June 2020)

Data Acquisition
• data acquisition

Verb - Data acquisition is defined as the process
of collecting and organizing information.

• Two data acquisition support groups at Jlab help
experimenters to take the data from their detectors
and store it for future analysis.
• FEDAQ Group – Physics Division – primarily front-end

hardware and software (close to the detectors).
• EPSCI Group – CST Division – focus on back-end software

tools for data transport, processing and storage.

• Anatomy of this DAQ Talk :
• What are all the pieces of a typical DAQ system?
• How we have implemented them here at Jlab?
• What are we working on for the future?
• Hopefully I can make it interesting…

We all can usually be found here -
on the 2nd Floor of F-Wing in Cebaf Center
(when there is not a pandemic going on)

FEDAQ (Fast Electronics and Data Acquisition)
EPSCI (Experimental Physics Scientific Computing Infrastructure)

• When a particle interacts with a target, resultant
particles from the interaction enter a detector.

• Various sub-detectors measure properties of these
particles (type, energy, trajectory) as electrical signals.

• Three basic types of measurements are - charge, time
and count.

• Electronics and software convert electrical signals into
digital data that can be stored and later analyzed.

ADC = charge, TDC = time, Scaler = count

• All of the data generated from one “interaction” is called
an Event.

Detection and data acquisition

• Data from one event has no history. It doesn’t
depend upon events that went before and
doesn’t influence later events.

• Events occur with random timing.
҆ Average rates from a few Hz to 100s of kHz
– Hardware may not be ready for new data.

– Dead time when data is lost.
– Events may overlap in time - event pileup.
– Peak event rates can be much more than the

average.

• Total event size depends upon the physics.
– Accidental hits unconnected with event.
– Electronic noise.
– Distribution of event sizes.

– Some very large events.

The Event as a unit of data

Data acquisition for big experiments
• Detecting hardware is large (many

thousands of channels) and physically
distributed within the detector. So we need
to:

– Tag where the data came from (and when).
– Gather all data “fragments” for one Event

together.
– Do it as efficiently as possible (no back-end

dead time)

• Experiments typically run for weeks or
months. So we need:

– Stability.
– Control - to start and stop the whole system.
– Monitor all experimental conditions under

which data was taken.

Clas12/Hall B Detector

GlueX/Hall D Detector

Anatomy of a DAQ System
• Readout – digitizing detector signals

• Triggering – choosing the data we want to keep

• Data formatting - standardize the data we are saving

• Event building - putting all the event fragments together

• Event transport - make events available to all

• Event storage - save events for later analysis

• Run Control - configure, start and stop experiments

• Monitoring - tell the experimenter what’s going on

Detector readout example, a scintillator

• A particle deposits energy in a scintillating material that converts it into light.
• A Photo Multiplier Tube (PMT) converts the light into a pulse of electricity.
• The charge is captured to generate a voltage.
• These pulses are typically fast (~ 10s of ns wide)
• An Analog to Digital Converter (ADC) measures the voltage as a digital value.

Picture of test scintillators in Hall-D

Photomultiplier

Scintillator

Array of scintillators

Sampling vs Integration - ADCs
• A traditional “integrating” ADC can take many

microseconds to digitize a pulse. A gate (logic) pulse,
generated by trigger electronics marks the region of
interest for the signal and enables integration of the
charge from the signal pulse.

• This type of ADC generates a single measurement
representing the charge sum during the gate.

• During the digitization period after the gate any later
pulses from the signal are lost (readout dead time).

• A Flash ADC samples continuously at a fixed rate based
on an input clock.

• For example, a 250 MHz ADC samples every 4 ns and
generates ~5-15 measurements during a typical gate.

• These samples describe the pulse shape as well as the
total charge.

• There is no dead time.

Gate pulse

Signal pulse

Signal pulse

Clock

Front-End Electronics (Modules / Buses)
• Big Detectors in the experimental halls can have

many 1000s of channels. All must be digitized (ADCs
TDCs).
҆Pack these circuits onto modules
҆Pack modules into Crates
҆Place crates into Racks
҆Use a standard bus to connect everything to a CPU.

• Common parallel bus standards still found in
experimental nuclear physics include:
҆CAMAC (24 bit, 3MB/s)
҆FASTBUS (32 bit, 40MB/s)
҆VME (32/64 bit, 40 MB/s – 320 MB/s)
҆PCI (64 bit, 500 MB/s)

• In the last ~10 years, parallel buses have been
mostly replaced or extended using serialized buses.
҆eg USB, PCIe, VME/VXS
҆We will talk more about this later…

ADCs TDCs

CP
U

BUS

Electronics evolve

FPGA – Field Programmable Gate Array

We can now buy programmable logic arrays that
allow us to implement complex algorithms in the
firmware on a single chip.

Virtually all the hardware trigger processing can be
done in these very powerful chips. We just have to
get all the relevant detector signals to them.

Trigger Supervisor – Circa 1995 Circa 2011

Another important development in electronics is
the ASIC or Application Specific Integrated Circuit.

It is similar to an FPGA but is generally designed to
a much more specific task. It is being used
increasingly as an interface to the analog signals
from the detectors.

JLAB – 64 channel Pipeline TDC

FPGA

TDC ASIC (8 channels)

Hits

Stop pulse

Time -->

Hit times are measured
relative to the Stop pulse

(which can also be a Trigger)

VME Module

JLAB – 16 channel 250 MHz Flash ADC

VXS Module

250 MHz ADC chip

2 FPGAs

VME Connector

VXS Connector

This module is currently used in all 4 Experimental

Halls at JLAB. It is a core component to establish

both Trigger Processing and Data Readout from the

detectors.

A Simple Trigger

• How do we know the detector signal came from an event?
– Fortunately we have more than one detector.
– Combine data from different detectors to characterize events.
– Determine which events are interesting.

• Example - Coincidence trigger – two detectors have data within a time window.

This “trigger” can now be used to form
a gate for the ADCs.

An analog trigger

• It takes some time for the trigger logic to decide if a signal
should be digitized.
• The analog signal must be delayed so that the gate and

signal arrive at the ADC at the same time. Typical coax
cables ~1 ns/ft so you could simply delay the signals using
long cables.

– Matching cable lengths is very important.
– The ADC cannot process a new signal until it is read or cleared.
– This limits the accepted trigger rate.

Here’s the long cable in Hall-A.
Detector hut Delay cable

When you have a 1000
channels and multiple
logic stages for the trigger.
You need A LOT of cable
delay for the signals.

Where do you put it…

Pipeline trigger

• Replace all that cable with digital memory.
• In a pipelined system a Flash ADC digitizes at a constant rate and

stores the values in a memory. Values are clocked into memory at
the same rate as the Flash ADC clock which, in the case of the JLAB
FADC, is 250MHz (4 nS).

• For example, if the trigger logic takes 200 nS we know that trigger
corresponds to measurements 200/4 = 50 clocks down the memory
pipeline.

• The readout software can Read all the samples or calculate the
integrated charge (sum the samples) + save time of arrival.

Trigger time stamp

50

ram

Trigger logic evolves
• Triggers used to use a lot of electronics

wired together. We can’t do that now:
– Propagation times down cables limit

trigger rates.
– Modern experiments require very

complex trigger decisions.

Hall C – Trigger processing - Circa 1994

Hall D – FADC Crate with VXS
Trigger Processor (VTP)

Flash ADCs and FPGAs have replaced
all the spaghetti cabling

VXS supports both a VME parallel bus
backplane as well as a high speed
serial mesh connecting all payload
slots to 2 switch slots

VXS Backplane

VTP

Example – The GLUEX trigger
• Each ADC sends signals to a crate level

trigger processor over VXS serial bus.

• Each CRATE Trigger processor sends signal
to a global trigger for all crates over fiber
optic cable.

• Global trigger tells trigger supervisor (TS)
which events are good.

• The TS tells Trigger Interface (TI) board in
each crate.

• The TI signals the CPU to read out crate and
provides information about which trigger
the data belongs to.

VXS

Fiber

Cable
VXS

FIBER

Look back 50 clocks

Copy data from
all ADCs in the crate

VXS

ADC Boards are
connected to CPU
via the VME bus.

16 channels per board

CTP Board sends local
trigger info to the global
trigger over fiber

Trigger interface
Intel CPU Read Out
Controller
(ROC) running
Linux

GlueX trigger, starts at ADC crate

ADC trigger data
over VXS serial bus

15 boards = 240
channels per crate

All crates connect to the Global Trigger Crate

Sub-system processor
board (SSP)

Global trigger
processor (GTP)

Outputs to
trigger
supervisor

Eight boards with
eight connectors each
so up to 64 crates.

Intel CPU controller

Final trigger goes to Trigger Supervisor crate

Signal Distribution board (SD)

Intel CPU for control and
configuration of the TD
and TS.

Trigger Distribution
board (TD).

Optical trigger link back
to crates.

VXS serial backplane

Trigger
Supervisor (TS)

Then back to the start to trigger VME readout

Trigger Interface
board (TI)

ADC payload board

Intel CPU ReadOut
Controller or ROC.

Output via network
link.
1 Gbit/s

Cable coming
from the TS/TD

• The TI board gets from the trigger supervisor:
• Signal to CPU to read the memory of the ADC boards.
• TI is read to get data about which events the ADC data belong to.

• The CPU:
• Copies ADC and TI data into memory via VME backplane,
• CPU encodes data in EVIO data format.
• Sends the data over the network to the rest of the data acquisition system.

CODA
• What is CODA (also see coda.jlab.org)

– Software toolkit for implementing data acquisition systems.

– Hardware/Electronics
• Custom boards like trigger, TDCs and ADCs.

• Support for commercial hardware.
– Software includes :

• Interface with electronics (libraries/drivers).
• Readout Front End and format data (ROC)

• Inter-process communication - Control and Data (cMsg)
• Merge data streams (DC, PEB, SEB)

• Give users access to data for analysis and monitoring (ET System)
• Write data to files (EVIO, ER)

• Manage and control the data acquisition system (AFECS)

• CODA is modular. Build a single crate DAQ or a full Experimental Hall system

http://coda.jlab.org

CODA – Support/Documentation

Web: https://coda.jlab.org Fileserver: /u/site/coda

CODA 3

CP
U

TI EMU
(Event Builder)

EMU
(Event Recorder)

File

File

CP
U

TI

ET

User

AFECS

ROC

ROC

ROC

Platform

GUI
COOL

Database

ROC – Readout Controller
EMU – Event Management Unit
ET – Event Transport
AFECS – Agent Framework Experiment Control System

CP
U

VT
P TI

VXS

VME

FASTBUS

SD

CODA Front-End – Readout Controller (ROC)

VME

OS: Linux
ARCH: Intel, Arm

ROC

Output Thread

Trigger ThreadProcess Thread

to EMU, ET
Stdout or File

DMA
Lib

VME
Lib

DMA
PoolControl

cMsg

USB

PCI

User
Libs

User User
FIFO

UserFIFO

ROL2 ROL1

Buffer
Pool

F
I
F
O

Interactive shell (Tcl)
$ <cmd>

Buffer
Pool

DL Lib

RemexBuffer Pool M
od

ul
es

VXS

to Trigger

CODA3 – The EMU Component

• EMU – Event Management Unit – is a JAVA-
based general processing application for DAQ.
It comes in many flavors:
• DC – Data Concentrator
• PEB – Primary Event Builder
• SEB – Secondary Event Builder
• ER – Event Recorder
• FCS – Farm Control Supervisor

• Input/Output Connections made via an ET
system or by EMUSocket protocol which is part
of the CODA cMsg library (it allows for “fat”
pipes on high bandwidth networks)

EMUSocket

ET

EMUSocket

ET

Run Control - AFECS

Many “rcgui” processes can communicate with
a single “platform” that is defined by a COOL
Database with a Name = env(EXPID).

The “platform” is a JAVA-based
application running multiple “agents”
that monitor and control external CODA
client components (ROC, PEB, ER…) or
internal processes (scripts). Multiple run
configurations can also be running
simultaneously.

External commands can be used in scripts
to communicate directly with the
platform.

Event Transport, ET
• Allocating and freeing buffers is time consuming.
• The ET system gives programs access to data via

preallocated shared buffers.
• The system uses a railroad metaphor. Empty data

buffers originate at Grand Central. They are filled by
data producers and tagged to describe the content.

• The buffers “move” around a circular track and at each
station the tag is checked to see if the buffer should
stop at the station.

• An event monitor could set up station, S2, to take 1% of
the events.

• An event filter could set up S3 to take all events.
Discarded events are sent back to GC good ones move
on.

• An event recorder takes all events and, after the data is
written to a file sends the buffer back to GC.

Configuration editor

The program jcedit allows the User to
graphically create different DAQ
configurations, defining the
components, data links, data files and
other details.

Here is a simple example for one ROC
connected to an Event Builder and the
Event Builder is then “throwing the data
away”

Event Building challenges
• The GlueX event rate is up to 90 kHz and there are 50+ crates.

• The GLUEX goal data rate is 1.5 GByte/s.

– 30 MByte/s average per each of the 50 incoming links.

– 1.5 GByte/s through the EB, ET and ER.

– Since data is copied several times the data rate inside
machine running EB is several times 1.5 GByte/s.

• This is what is commonly called the bottleneck effect. Even if
the network bandwidth is sufficient. It could be a lot for one
machine to handle.

– Solution: multi stage parallel event builder.

Mon

SEB ET ER

CODA3 Example Parallel Config

If all the Front-End (ROCs) generate too much data
in aggregate - make the event building parallel.

Two Stage Event Building
2 Parallel Data Streams

(each writes half the data)

Front-End ROCs send to
4 Data Concentrators
2 Secondary Event Builders
2 Event Recorders

(with ET systems for Inputs)

By default data is routed from DCs to SEBs equally
with alternating event blocks.

Control Events go to both streams.

User events will only go to the first stream.

File

File

File

File

EVIO Data format, what does it look like

• EVIO data are are blocks of 32 bit words
• Bank - container for other data
• Each bank starts with a header (2 words)

– Length (in words).
– Description of content.

• The outer header tells us this bank contains
more banks.
• The first bank is a list of trigger information

for all the events in the block.
• The following “payload banks” contain

blocks of raw data read from ADCs or TDCs.

EVIO File Viewer - jeviodmp

Data storage
• 6 GeV experiments ran at tens of MB/s.
• 12 GeV experiments, hundreds of MB/s.
• Generate tens of petabytes per year.
• Tape is cheap but disk is faster.
• We write data to disk then copy from disk

to tape later.
– Tape speed only needs to handle average

rate over a 24 hour period.
– Tape drives and library robots are expensive

and fragile. Writing to disk allows data
taking to continue if the tape system breaks.

– We typically have enough disk to hold three
days of raw data.

JLAB Tape Library – CEBAF Center, F-Wing

Looking forward

• New experiments are being proposed (eg MOLLER, TDIS, SoLID)
• Detectors that do not play well together due to timing.

• Traditional trigger and event builder strategies are not ideal.
• Detectors with peculiar topologies.

• Detectors split or segmented in a way that makes forming a trigger hard.
• High event and/or data rates.

• Particles from more than one event in a detector at the same time – need to disentangle.

• The data acquisition from these experiments does not fit well with
current techniques.
• In the DAQ business we are always looking at ways to take advantage

of the trends in electronics and computing.

What would we expect to be happening?

• If we extrapolate current trends:
– CPUs are becoming more powerful but the performance that matters for online systems is

achieved mainly through doing more in parallel rather than improvements in per-core
performance.

– FPGA performance, affordability and usability are still improving.
– IO and serial network bandwidth still seem to be growing exponentially.

• It is time to revisit the ideas that have dominated nuclear physics
detector readout for the past twenty or thirty years.
• Move things that we moved from hardware to software 25 years ago back into hardware (or

at least firmware).
• Reevaluate the use of busses – serial links are faster and more cost effective.
• Reevaluate data flow.

• In traditional triggered readout:
҆ Data is digitized into buffers and a trigger, per event, starts

readout.
҆ Parts of events are transported through the DAQ to an event

builder where they are assembled into events.
҆ At each stage the flow of data is controlled by “back pressure”.
҆ Data is organized independently by event.

What if we can get rid of the the whole Front-end
Trigger Processing path?

Streaming mode

41

• In a Streaming readout:
҆ Data is read continuously from all channels.
҆ Validation checks at source reject noise and suppress

empty channels.
҆ The data then flows unimpeded in parallel channels

to storage or a local compute resource.
҆ Data flow is controlled at source.
҆ Data is organized in multiple dimensions by channel

and time.

• The lack of a trigger means that:
҆Potentially useful physics is not discarded.
҆Run groups of experiments in parallel.
҆The system is simplified.
҆Readout speed is independent of detector response

time.
҆Flow control at data source not via backpressure.

• Parallel timestamped streams mean:
҆System is robust against minor hardware or firmware

glitches.
҆Can use different analysis techniques such as looking

for hit patterns rather than reconstructing events.

• Requires robust and accurate time stamp
generation and distribution.
҆Is still a simpler task than an online trigger.

Streaming advantages

42

In practical terms, what does it look like?

Software processing
ultimately reduces the
final data storage
requirements

FPGA

JLAB FADC in “Streaming Mode”

TS1

0 N

ROI

TH

ROI

TH

ROI

TH

ROI

TH

TS2 TS3 TS4

ROI

TH

ROI

TH

ROI

TH

Fine
Time Stamp

Chan 1

Streaming data can be thought of as Triggered mode where the trigger is a fixed pulser and you keep all the
data for a single channel generated from the last pulse.

A 250 MHz FADC generates a 12 bit sample every 4ns. That corresponds to 3 Gb/s for one channel!
We can’t deal with all that data (particularly if we have 1000s of channels) and we really do not want to.

Chan 16

Readout Time Slice

Within the FPGA we keep only the data around a Region of Interest (ROI) from
each channel, along with a fine time stamp in each time slice window.

We can keep the individual samples or just compute a sum.

.

.

.

• VME Readout is a bottleneck for Streaming

• The VTP board is able to read 250 MHz FADC

via the VXS serial backplane and stream the

data out over the front panel transceivers.

a) Read a crate in this mode.

҆Zero suppression logic

҆Flow control

҆What comes out on the front panel fiber?

҆How to interface with DAQ?

b) The VXS interface allows read out for some

detectors in streaming mode!

c) Can we repackage to remove need for

expensive VXS crates etc. for all the

detectors?

҆ Cheaper systems for university groups?

CODA Front-end for Streaming

The CODA ROC can
run on the ARM
processor chip primarily
to configure the
hardware.

Data can be processed
and streamed directly
through the FPGA

CODA ROC on the VTP

VXS

M
od

ul
es

OS: Linux
ARCH: Arm

ROC

Output Thread

VME

Process Thread

to EMU, ET,
or CODA_SRO

FPGA
Lib

VXS
Lib

FPGA

User
Libs

User
ROL1

F
I
F
O

Interactive shell (Tcl)
$ <cmd>

Buffer
Pool

DL Lib

Control

cMsg

Remex Buffer Pool

Buffer Pool

Stream/Trigger
Processing

Output
(Hardware Assist)

VXS The primary Data path
either Triggered or
Streamed stays in
hardware.

In this case the VME
backplane becomes
optional. The VME CPU
can process scalars or
other monitoring tasks.

Front-End Electronics – Sans crate!
MAROC ASIC “Front-End” Board

FPGA Daughter Board
Optical Link

• Recent Front-End Electronics developed by the FEDAQ group

have been implemented in several detectors (CLAS12 RICH and

GlueX DIRC)

• Currently the detector data is sent to another FPGA board in a

VXS crate, but in practice the optical link off the FEE FPGA can

be streamed directly to an ethernet port on a PC.

• This can facilitate development by collaborators without big

system overhead, but it is also a peek into the future streaming

model for Big experiments.

Summary
• Data acquisition is constantly challenging.

– Technology changes all the time.
– Physicists think up experiments with tougher

requirements.
– The boundary between hardware and software is fluid and

depends on what is available when a system is
implemented.

– There is always some R&D time to discover new
algorithms and techniques.

– To be honest, we do it because it’s fun and we get to play
with all of the cool toys!

– Thank you for your attention…

