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Buffer 
Size 

Write 
MB/sec 

Read 
MB/sec 

64KB 239 238 
128KB 248 246 
256KB 252 250 
512KB 254 252 
1MB 255 254 
2MB 256 254 
4MB 256 254 
8MB 256 254 
16MB 256 254 
32MB 256 254 
64MB 256 254 
128MB 255 253 

 
Table 1 

Tsi148 DMA Performance 
 

Table 1 shows the impressive 
performance that has been achieved 
using a pair of MVME6100 boards 
under VxWorks 5.5.1 in an industry 
standard 12 slot VME64x (5-row 
backplane) chassis.   The values were 
obtained using a single DMA channel 
utilizing the 2eSST transfer mode of the 
Tsi148 while the chassis was otherwise 
“quiet”.  These values, identical for both 
direct and linked-list DMA transfers, 
likely represent the maximum 
performance that could be expected by 
users of the MVME6100 when a single 
Tsi148 DMA channel is utilized.  This 
paper describes the configuration 
requirements a user will need to perform 
in order to achieve equivalent 
performance in their application.  The 
code used to generate the values 
captured in the various tables of this 

paper is available through MCG’s 
OnLine Services as Solution S1852.  In 
all instances the transfer mode is 2eSST 
and, although direct DMA was used, 
equivalent values were achieved using 
linked-list (chained) DMA.  When both 
channels of the Tsi148 DMA controller 
are used 295 MB/sec has been obtained 
writing 8MB blocks, 256 MB/sec while 
reading. 

 

Four items have been identified that 
affect the performance of DMA transfers 
when using the Tsi148 VME bridge on 
the MVME6100.  Each of these will be 
discussed in the following paragraphs.  
Another item, however, does need to be 
mentioned.  The VMEbus does not have 
unlimited bandwidth.  DMA traffic must 
contend with other VMEbus users for 
the available capacity.  All the transfer 
rates described in this paper were 
achieved by ensuring that there were no 
other users of the VMEbus.  Specifically 
all other boards within the chassis were 
idling in their firmware, either PPCxBug 
or MOTLoad. 

 

The first configuration item to address is 
the value selected for the VME block 
size in the DMA descriptor.  This must 
be set correctly to achieve the maximum 
possible performance.  The value chosen 
for maxVmeBlockSize in the structure 
VME_BUS_USAGE (see tempe.h) 
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should be 2048.  This is the maximum 
block size supported under VME 
(ANSI/VITA 1.1-1997, section 11.1.6).  
The Tsi148 was designed with an 8KB 
buffer to support two 4KB buffers; 4KB 
being the maximum block size on the 
PCI-X bus (PCI-X Protocol Addendum 
to the PCI Local Bus Specification 
Revision 2.0a, section 7.2.3).  Internally 
the DMA engine of the Tsi148 VME 
bridge will attempt to move buffers 
toward their destination bus 
simultaneously.  An apparent flaw in the 
Tsi148 precludes two concurrent 4K 
buffers, so selecting the maximum block 
size of 4K for PCI-X bus 
(maxPciBlockSize in the 
TEMPE_DMA_ATTRIBUTES 
structure) and 2K for the VMEbus 
(maxVmeBlockSize in the 
TEMPE_DMA_ATTRIBUTES 
structure) allows the DMA engine to 
process both busses simultaneously.  The 
ability to transfer data on both busses 
simultaneously provides an approximate 
60 MB/sec advantage over transferring 
on only one bus at a time. 
 

The second configuration item for the 
user to address is the need to disable 
snooping on PCI bus 0.  This can be 
accomplished by undefining the macro 
PCI_DMA_SNOOP_BUS_0_ON in 
config.h.  If shared memory is 
configured by the user, then this macro 
will be undefined as a result of defining 
INCLUDE_SM_NET.  Disabling 
snooping implies that the user will also 
have to disable caching in the targeted 
memory region and maintain coherency 
through software. 

 

There is a caveat, however, of which the 
user must be aware:  if the definition of 
INCLUDE_SM_NET is performed by 

means of the Tornado Project Facility 
then the result is not an optimal 
configuration.  The configuration, either 
by means of a #undefine of 
PCI_DMA_SNOOP_BUS_0_ON or a 
#define of INCLUDE_SM_NET, must 
be performed by a modification in 
config.h.  This is because 
sysMv64360Smc.c directly includes 
config.h; thus the value selected in 
config.h, not prjComps.h, will control 
the build of vxWorks.  This situation is 
another instance of differing build 
results that can occur between use of the 
Project Facility and command line 
operations.   

 

An alternative to controlling snooping 
and caching with the use of build time 
parameters would be through the use of 
sysMv64360SpecialMem().  This 
routine, found in 
sysMv64360SpecialMem.c, can be used 
to dynamically control the characteristics 
of a memory region.  The DMA 
performance that was observed when 
snooping on PCI bus 0 was not disabled 
by either mechanism is shown in Table 
2. 

Buffer 
Size 

Write 
MB/sec 

Read 
MB/sec 

64KB 181 204 
128KB 187 212 
256KB 190 216 
512KB 191 218 
1MB 192 219 
2MB 192 219 
4MB 192 220 
8MB 192 220 
16MB 192 220 
32MB 192 220 
64MB 191 220 
128MB 190 220 

 
Table 2 

Tsi148 DMA to snooped/cached memory 
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It is the architecture of the Discovery II 
Processor Host Bridge that requires 
snooping to be turned off on PCI bus 0.  
As with the Discovery I Processor Host 
Bridge used on the MVME5500, the 
device does not use the PPC bus as the 
path for transfers to or from DRAM. 
Rather it uses one of the ports of the 
internal crossbar switch. The advantage 
of the Discovery architecture is that 
simultaneous transfers between differing 
ports are possible. The disadvantage is 
that if memory is to be snooped, the 
transaction must stall while being 
presented to the processor for a snoop 
cycle. It is the introduction of this 
latency that leads to the less than optimal 
DMA performance.  
 
The third item that contributes to the 
performance of the Tsi148 DMA engine 
is not controlled within software.  Rather 
it is the position of the MVME6100 
relative to the System Controller of the 
rack in which the MVME6100 resides.  
The closer the MVME6100 is to the 
System Controller, the greater the 
observed transfer rate.  Testing has 
determined that it does not matter what 
VME bridge device is the System 
Controller; identical transfer rates were 
observed when using a VME6000 (on an 
MVME147), a Universe II (on an 
MVME2100), and a Universe IID (on an 
MVME5500).  It is the length of the 
daisy chain through which the bus 
request and grant has to traverse that is 
significant.  This effect has been 
observed before with MBLT transfers, 
but is startling when first observed with 
2eSST transfers.   
 
The values shown in Table 1 were 
achieved with the MVME6100 master in 
slot 1 and the MVME6100 target in slot 
2.  In this case the DMA engine co-

resides with the System Controller.  
When the target MVME6100 is moved 
to slot 10 the results shown in Table 3 
were observed.  The slots between the 
master MVME6100 and target 
MVME6100 were occupied with a 
representative sample of MCG PowerPC 
boards, all idling in firmware.  A slight, 
one MB/sec, performance drop is 
observed.  This indicates that although 
the length of the backplane that the 
transfer must traverse does affect 
performance, it does not do so 
significantly. 
 
Table 4 shows the transfer rates achieved 
when the MVME6100 master was 
moved to slot 9 of the chassis while the 
MVME6100 target remained in slot 10.  
Other than moving the card formerly in 
slot 9 to slot 1, the payload of the chassis 
remained identical to that used for Table 
3.  A noticeable drop in achieved 
performance, on the order of 26 MB/sec, 
is observed.  Spot checks with the 
MVME6100 master located in various 
slots between 2 through 8 indicate that 
the achievable throughput drops in a 
linear fashion the further the DMA 
engine is located from the System 
Controller. 
 

The observed performance drop can be 
somewhat mitigated by isolating the 
MVME6100 pair onto an otherwise 
unused bus request level.  This is the 
fourth, and final, element for users to 
manage. Tables 3 and 4 show the 
performance observed when all boards 
in the chassis were on bus request level 
3.  Table 5 provides the results obtained 
when the MVME6100 pair in slots 9 and 
10 were isolated onto bus request level 
2.  A 13 MB/sec improvement is 
observed.  When the MVME6100 pair, 
isolated on Bus Request Level 2, was 
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located in slots 1 and 2 there was no 
difference in the performance observed 
from when all boards where on Bus 
Request Level 3.  The bus request level 
was changed by altering the line 
YES_INIT_TEMPE_REG 
(TEMPE_VMCTRL, 0x00000707) in 
sysTempe.c (at line 183) to 
YES_INIT_TEMPE_REG 
(TEMPE_VMCTRL, 0x00000706). 

 

Buffer 
Size 

Write 
MB/sec 

Read 
MB/sec 

64KB 238 237 
128KB 246 245 
256KB 251 249 
512KB 253 252 
1MB 254 253 
2MB 255 253 
4MB 255 253 
8MB 255 254 
16MB 255 254 
32MB 255 253 
64MB 254 253 
128MB 253 253 

 

Table 3 

DMA engine in slot 1, Target in slot 10 

 
Buffer 
Size 

Write 
MB/sec 

Read 
MB/sec 

64KB 220 219 
128KB 227 225 
256KB 231 229 
512KB 232 231 
1MB 233 232 
2MB 234 232 
4MB 234 233 
8MB 234 233 
16MB 234 233 
32MB 234 232 
64MB 233 232 
128MB 232 232 

 
Table 4 

DMA engine in slot 9, Target in slot 10 

 

Buffer 
Size 

Write 
MB/sec 

Read 
MB/sec 

64KB 231 230 
128KB 239 238 
256KB 243 242 
512KB 245 244 
1MB 246 245 
2MB 247 245 
4MB 247 245 
8MB 247 245 
16MB 247 245 
32MB 247 245 
64MB 247 245 
128MB 247 245 

 
Table 5 

DMA engine in slot 9, Target in slot 10 

Isolated at Bus Request Level 2 

 

To summarize, optimal DMA 
performance is achieved by 

1. setting the VME block size to 
2048, 

2. ensuring that the memory buffers 
are unsnooped and uncached,  

3. ensuring that the DMA engine is 
as close as possible to the system 
controller, and 

4. isolating the master and target 
boards on a Bus Request Level. 


