
Motorola Computer Group
Application Note

Page 1 of 4 8/23/2004

MVME6100 DMA Performance

Observations and Guidelines

William Dennen
VME Product Operation

Buffer
Size

Write
MB/sec

Read
MB/sec

64KB 239 238
128KB 248 246
256KB 252 250
512KB 254 252
1MB 255 254
2MB 256 254
4MB 256 254
8MB 256 254
16MB 256 254
32MB 256 254
64MB 256 254
128MB 255 253

Table 1

Tsi148 DMA Performance

Table 1 shows the impressive
performance that has been achieved
using a pair of MVME6100 boards
under VxWorks 5.5.1 in an industry
standard 12 slot VME64x (5-row
backplane) chassis. The values were
obtained using a single DMA channel
utilizing the 2eSST transfer mode of the
Tsi148 while the chassis was otherwise
“quiet”. These values, identical for both
direct and linked-list DMA transfers,
likely represent the maximum
performance that could be expected by
users of the MVME6100 when a single
Tsi148 DMA channel is utilized. This
paper describes the configuration
requirements a user will need to perform
in order to achieve equivalent
performance in their application. The
code used to generate the values
captured in the various tables of this

paper is available through MCG’s
OnLine Services as Solution S1852. In
all instances the transfer mode is 2eSST
and, although direct DMA was used,
equivalent values were achieved using
linked-list (chained) DMA. When both
channels of the Tsi148 DMA controller
are used 295 MB/sec has been obtained
writing 8MB blocks, 256 MB/sec while
reading.

Four items have been identified that
affect the performance of DMA transfers
when using the Tsi148 VME bridge on
the MVME6100. Each of these will be
discussed in the following paragraphs.
Another item, however, does need to be
mentioned. The VMEbus does not have
unlimited bandwidth. DMA traffic must
contend with other VMEbus users for
the available capacity. All the transfer
rates described in this paper were
achieved by ensuring that there were no
other users of the VMEbus. Specifically
all other boards within the chassis were
idling in their firmware, either PPCxBug
or MOTLoad.

The first configuration item to address is
the value selected for the VME block
size in the DMA descriptor. This must
be set correctly to achieve the maximum
possible performance. The value chosen
for maxVmeBlockSize in the structure
VME_BUS_USAGE (see tempe.h)

Motorola Computer Group
Application Note

Page 2 of 4 8/23/2004

should be 2048. This is the maximum
block size supported under VME
(ANSI/VITA 1.1-1997, section 11.1.6).
The Tsi148 was designed with an 8KB
buffer to support two 4KB buffers; 4KB
being the maximum block size on the
PCI-X bus (PCI-X Protocol Addendum
to the PCI Local Bus Specification
Revision 2.0a, section 7.2.3). Internally
the DMA engine of the Tsi148 VME
bridge will attempt to move buffers
toward their destination bus
simultaneously. An apparent flaw in the
Tsi148 precludes two concurrent 4K
buffers, so selecting the maximum block
size of 4K for PCI-X bus
(maxPciBlockSize in the
TEMPE_DMA_ATTRIBUTES
structure) and 2K for the VMEbus
(maxVmeBlockSize in the
TEMPE_DMA_ATTRIBUTES
structure) allows the DMA engine to
process both busses simultaneously. The
ability to transfer data on both busses
simultaneously provides an approximate
60 MB/sec advantage over transferring
on only one bus at a time.

The second configuration item for the
user to address is the need to disable
snooping on PCI bus 0. This can be
accomplished by undefining the macro
PCI_DMA_SNOOP_BUS_0_ON in
config.h. If shared memory is
configured by the user, then this macro
will be undefined as a result of defining
INCLUDE_SM_NET. Disabling
snooping implies that the user will also
have to disable caching in the targeted
memory region and maintain coherency
through software.

There is a caveat, however, of which the
user must be aware: if the definition of
INCLUDE_SM_NET is performed by

means of the Tornado Project Facility
then the result is not an optimal
configuration. The configuration, either
by means of a #undefine of
PCI_DMA_SNOOP_BUS_0_ON or a
#define of INCLUDE_SM_NET, must
be performed by a modification in
config.h. This is because
sysMv64360Smc.c directly includes
config.h; thus the value selected in
config.h, not prjComps.h, will control
the build of vxWorks. This situation is
another instance of differing build
results that can occur between use of the
Project Facility and command line
operations.

An alternative to controlling snooping
and caching with the use of build time
parameters would be through the use of
sysMv64360SpecialMem(). This
routine, found in
sysMv64360SpecialMem.c, can be used
to dynamically control the characteristics
of a memory region. The DMA
performance that was observed when
snooping on PCI bus 0 was not disabled
by either mechanism is shown in Table
2.

Buffer
Size

Write
MB/sec

Read
MB/sec

64KB 181 204
128KB 187 212
256KB 190 216
512KB 191 218
1MB 192 219
2MB 192 219
4MB 192 220
8MB 192 220
16MB 192 220
32MB 192 220
64MB 191 220
128MB 190 220

Table 2

Tsi148 DMA to snooped/cached memory

Motorola Computer Group
Application Note

Page 3 of 4 8/23/2004

It is the architecture of the Discovery II
Processor Host Bridge that requires
snooping to be turned off on PCI bus 0.
As with the Discovery I Processor Host
Bridge used on the MVME5500, the
device does not use the PPC bus as the
path for transfers to or from DRAM.
Rather it uses one of the ports of the
internal crossbar switch. The advantage
of the Discovery architecture is that
simultaneous transfers between differing
ports are possible. The disadvantage is
that if memory is to be snooped, the
transaction must stall while being
presented to the processor for a snoop
cycle. It is the introduction of this
latency that leads to the less than optimal
DMA performance.

The third item that contributes to the
performance of the Tsi148 DMA engine
is not controlled within software. Rather
it is the position of the MVME6100
relative to the System Controller of the
rack in which the MVME6100 resides.
The closer the MVME6100 is to the
System Controller, the greater the
observed transfer rate. Testing has
determined that it does not matter what
VME bridge device is the System
Controller; identical transfer rates were
observed when using a VME6000 (on an
MVME147), a Universe II (on an
MVME2100), and a Universe IID (on an
MVME5500). It is the length of the
daisy chain through which the bus
request and grant has to traverse that is
significant. This effect has been
observed before with MBLT transfers,
but is startling when first observed with
2eSST transfers.

The values shown in Table 1 were
achieved with the MVME6100 master in
slot 1 and the MVME6100 target in slot
2. In this case the DMA engine co-

resides with the System Controller.
When the target MVME6100 is moved
to slot 10 the results shown in Table 3
were observed. The slots between the
master MVME6100 and target
MVME6100 were occupied with a
representative sample of MCG PowerPC
boards, all idling in firmware. A slight,
one MB/sec, performance drop is
observed. This indicates that although
the length of the backplane that the
transfer must traverse does affect
performance, it does not do so
significantly.

Table 4 shows the transfer rates achieved
when the MVME6100 master was
moved to slot 9 of the chassis while the
MVME6100 target remained in slot 10.
Other than moving the card formerly in
slot 9 to slot 1, the payload of the chassis
remained identical to that used for Table
3. A noticeable drop in achieved
performance, on the order of 26 MB/sec,
is observed. Spot checks with the
MVME6100 master located in various
slots between 2 through 8 indicate that
the achievable throughput drops in a
linear fashion the further the DMA
engine is located from the System
Controller.

The observed performance drop can be
somewhat mitigated by isolating the
MVME6100 pair onto an otherwise
unused bus request level. This is the
fourth, and final, element for users to
manage. Tables 3 and 4 show the
performance observed when all boards
in the chassis were on bus request level
3. Table 5 provides the results obtained
when the MVME6100 pair in slots 9 and
10 were isolated onto bus request level
2. A 13 MB/sec improvement is
observed. When the MVME6100 pair,
isolated on Bus Request Level 2, was

Motorola Computer Group
Application Note

Page 4 of 4 8/23/2004

located in slots 1 and 2 there was no
difference in the performance observed
from when all boards where on Bus
Request Level 3. The bus request level
was changed by altering the line
YES_INIT_TEMPE_REG
(TEMPE_VMCTRL, 0x00000707) in
sysTempe.c (at line 183) to
YES_INIT_TEMPE_REG
(TEMPE_VMCTRL, 0x00000706).

Buffer
Size

Write
MB/sec

Read
MB/sec

64KB 238 237
128KB 246 245
256KB 251 249
512KB 253 252
1MB 254 253
2MB 255 253
4MB 255 253
8MB 255 254
16MB 255 254
32MB 255 253
64MB 254 253
128MB 253 253

Table 3

DMA engine in slot 1, Target in slot 10

Buffer
Size

Write
MB/sec

Read
MB/sec

64KB 220 219
128KB 227 225
256KB 231 229
512KB 232 231
1MB 233 232
2MB 234 232
4MB 234 233
8MB 234 233
16MB 234 233
32MB 234 232
64MB 233 232
128MB 232 232

Table 4

DMA engine in slot 9, Target in slot 10

Buffer
Size

Write
MB/sec

Read
MB/sec

64KB 231 230
128KB 239 238
256KB 243 242
512KB 245 244
1MB 246 245
2MB 247 245
4MB 247 245
8MB 247 245
16MB 247 245
32MB 247 245
64MB 247 245
128MB 247 245

Table 5

DMA engine in slot 9, Target in slot 10

Isolated at Bus Request Level 2

To summarize, optimal DMA
performance is achieved by

1. setting the VME block size to
2048,

2. ensuring that the memory buffers
are unsnooped and uncached,

3. ensuring that the DMA engine is
as close as possible to the system
controller, and

4. isolating the master and target
boards on a Bus Request Level.

