
CODA Status
(not my title)

Graham Heyes
February 23rd 2018



CODA – as used by GlueX
• Front-end : Electronics, drivers, readout lists, ROC, Linux, Linux 

drivers.
• Back-end : Everything else
• Infrastructure : Third-party stuff, Linux, Drivers, network, RAID

array(s).

Front-end

Embedded
Linux

Back-end

ROC

Event Builder
(EB)

ReadOut
Controller (ROC)

ROC

Event Recorder
(ER)

Event 
Transport

(ET)

Monitor or filter

Trigger

Detector

AFECS
(Run Control)

cMsg
Communication

Status 
displaysUser interface



Where are we?
• On Monday of this week we got halls B, D and DAQ group 

together for a chat.

–Halls B and D have almost identical front-end.

•Halls B and D see the same problems.

–Hall B had a working DAQ at the end of 6 GeV running.

• Current hall-B back-end is basically the same one used for 6
GeV with some modifications. They have no issues at the 
rates they have run at so far.

–GlueX back-end has several as yet unresolved issues:

• Stability, there are some strange issues that prevent runs 
from starting under some conditions.

• Rate – as configured is fine for this run but not for Fall.

• Lower priority bugs/implementation issues.



Front-end
• Front-end issues account for lost beam time ~10% for each of halls 

B and D.

– Some issues were a surprise in that, until now, it had not been 
made clear that they were a problem at the level that was 
discussed.

– In particular there were phrases like “the well-known XYZ 
problem” where the problem was well known but only to those 
who knew it well, this is a communication issue. 

–Beam time this year is limited but intermittent and hard to 
diagnose issues take time to fix properly – some things not fixed.

• Path forward:

–Both halls will provide a clear prioritized list.

–Both halls + DAQ + Fast Electronics will work on communication!



Back-end : Run control
• Run Control is very stable and issues fall in three categories :
– Failure to communicate with a ROC, EB etc is frequently 

perceived as a Run Control problem so RC is needlessly 
restarted!
– Front-end issues generate errors that are MEANT to prevent 

a run from being started but this is perceived as a Run 
Control problem.
– Starting a run can take a long time. This is not a problem 

with Run Control but with other parts of the DAQ system, in 
particular the distributed EB.



Back-end: Event Builder
• Sometimes the initial DC to EB network 

connection takes a long time. It doesn’t fail 
it’s slow!
– Simplify code as much as possible.

• DCs don’t play well together on the same 
machine. 

• ROCs per DC limited.
– < 12 ROCs per DC runs fine.
– >= 13 ROCs per DC is much slower.
–We don’t have enough real ROCs to test

in the lab – need your system.
• Current production system has a single SEB 

and ER. 
– Rate limit is the ER writing a single file.

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

DC

DC

DC

DC

SEB ET ER

Monitor



Back-end: Improve file writing
• One file limits us to 900 Mbyte/s

• Could use:

– Two SEB, two ER and two files.

– One SEB, two ER and two files.

– One SEB, one ER and two files.

• Issue is that ER needs to see the END event from 
the SEB to close the files and end the run correctly.

– Two ERs requires duplication of control events.

• Bottom solution is preferred for these rates but 
involves changes to ER and/or EVIO.

• We are working on this.

– Need time with the GlueX system when ready!!

SEB ET ER

SEB ET ER File

File

SEB ET

ER

ER File

File

SEB ET ER

FileFile

SEB ET ER File



Back-end : cMsg
• We wrote cMsg because, at the time, no other freely

available messaging system met the requirements.
–Used in the background for CODA components to 

communicate with each other and with Run Control.
–Was never intended to be a high data volume, high

message rate general purpose messaging system.
– Just fine for low rate small messages.
–Users should use xMsg, used by CLARA, which is a layer 

on top of the open source zeroMQ package, instead of 
cMsg for high data volume applications.



What next? – not quite conclusion
• GlueX and CLAS12 will provide prioritized lists of front-end 

issues.

–DAQ and Fast Electronics will work aggressively on 
permanent solutions.

–We (DAQ and FE) will likely require access to hardware 
with and without beam.

• Back-end issues are known but the causes of some of them 
are not well understood.

–Need testing time or at least diagnostic feedback.

–Rate issues do not appear to be show stoppers given the 
current system performance.



Mutterings – CLAS12
• All the woes of the world will be solved if GlueX uses the CLAS12 

back-end…

– The CLAS12 system is a “hacked/modified” version of CODA 2.5.

– The EB is single threaded and single process, it has inherent 
bottlenecks and not much room for improvement.

– The GlueX front-end data is not in a compatible format.

• In particular the trigger data is not handled correctly.

– The output of the CLAS12 EB is not in a format compatible with the 
GLUEX monitoring and offline. 

• It is much more work to take the CLAS12 code and retro fit it than to 
fix the remaining CODA 3 issues OR to rewrite the CODA EB and ER 
using techniques that were in their infancy when they were 
designed.



Mutterings - Java
• We’d be better off without Java in the EB and ER…

– Maybe true but not for the reasons that you would think.

– The stability and performance of the Java code is no worse than C or C++ 
code that does exactly the same job.

– The lessons learned are:

• The Java VM is a black box - many moving parts outside our control.

• Debugging can be a challenge.

• Working in the OO paradigm can add complexity.

• Because code runs in a VM the VM grabs a lot of resources up front

–Multiple VMs on the same machine are an issue.

–Linux’s response to “badly behaved VMs” is troublesome.

• Java is very forgiving, issues take while before they bite.

– Many issues blamed on the use of Java turned out to be something else.



Back room developments
• Data compression

–Working on an EVIO that compresses the data payload between 
uncompressed block headers.

• 900 Mbyte/s disk limit relaxes.
– Problem is that single thread compression limits to 300 Mbyte/s 

compression rate and multi thread version is complex.

– Bought a commercial compression accelerator

•Multi Gbyte/s rates but needs EVIO support.
• zeroMQ – open source library under xMsg used by CLARA would 

allow rapid development of a much simpler EB and ER with C/C++ 
as programming language – remove the VM from the data path. 

–What sort of priority should this be given?

– Get things running stably at Fall run rates first.


