This space left intentionally blank Please do not adjust your projector.

DAQ Group

Hall and group leaders meeting February 25th 2020 So, I started to write this talk and went back to my folder of old talks to use The last one as a template...

DAQ Group

Hall and group leaders meeting November 12th 2019

...little wonder that it didn't seem long ago. The good thing is that it makes this presentation a bit shorter.

Streaming readout

As part of the lab agenda I am writing up what streaming readout is and why we would use it. Quick refresher :

The diagram shows a single 4 ns/sample ADC channel. To read it out we could:

- 1. Save every ADC sample, 250 per µs, maybe 1 Gbyte/s per channel.
 - Generates deterministic fixed rate of fixed length blocks with fixed timing.
 - Wasteful because there are large periods of time when there is no signal.
- 2. Use a trigger to tell the ADC when to start sampling and a gate to determine how many samples
 - This is effectively what we do now. Variable length blocks with random timing.
 - Needs electronics to generate the trigger, potential to introduce bias into the data, other issues.
- 3. Effectively save every ADC sample but encode the data in a space saving format.
 - For example, In this 1 µs period there were only N words of data above threshold and here they are.
 - There is a continuous stream of variable length data blocks. (There is always a block even if it is empty).
 - This is streaming readout.
- Aim to have paper completed later this week and distribute to hall leaders and other interested folks.

What does a streaming system look like?

Streaming

What are we doing?

- Work on the parts of a practical streaming system in parallel.
 - -Hardware
 - Firmware
 - Data transport streaming format and protocol
 - Frameworks for virtual trigger, calibration, reconstruction etc.
- Aim to support upcoming experiments like TDIS, SoLID etc.
- Aim to see how we can retrofit this readout mode for existing detectors -> CLAS12
- Use any opportunities we have to gain practical experience.

Hardware/firmware - STDCartix: Condensed VETROC

- Streaming capable VETROC
- Specifications:
 - 192 (6*32) LVDS IO channels
 - -2 QSFP connectors (up to 8*6 Gbps)
 - -1 USB-C (power)
 - -1 1000BASE-T GBE (power)
 - -10 GBE (4*2.5 Gbps)
 - -TI interface
 - -Xilinx Artix-7 xc7a200 FPGA
- Status:
 - The PCB layout is done. Need a real-world application (streaming) to produce some:
 - FPGA-based TDC (35ps or better).
 - Standalone IO board.
 - Anything you can program the FPGA to do.

Hardware/firmware - 2nd generation of PClexpress TI.

- Requested by Sergey in hall-B.
- Improvements:
 - Two optic interfaces, it can interface with the TS/TD and a TI_master (similar to HallB/D setup).
 - PCIex8 Gen 3, should be compatible with all the current computer/CPU PCIexpress slots.
 - VME TI copper_cable_IO (34-pin) to keep the full VME TI_master functions, plus some extras.
- Other uses:
 - Streaming readout adaptor: sources 8*16 Gbps (two QSFP connectors), destination: CPU (via the PCIe, up to 8*16 Gbps).
 - Standalone configuration: USB-C power and control (no VME, nor PCIexpress).
 - 64-channel high resolution (<20ps) FPGA based TDC, or simply a 64-channel LVDS IO board.
- Status:
 - Two prototypes are due in next month.
 - FPGA firmware development underway.

Streaming readout for GEMs – Ed and Eric.

- INDRA-ASTRA Facility (CC F110)
- Variety of hardware that is "streaming capable"
 - User programmable network switch with 100 Gb/s data link
 - Fast multi-core server machines with 100 Gb/s data links
 - Fast PC's with several PCIe slots for testing high speed data links, FPGAs, GPU's, etc.
- Triple-GEM detector provides 768 channels of analog data
- Custom transition card fabricated to facilitate ALICE FEC inputs
- Prototype to evaluate readout via 800 channels of SAMPA readout (5 FEC's, 25 SAMPA chips) in streaming mode.

SAMPA readout test system

- SAMPA serial data streams on a FEC are concentrated into two 4.48 Gb/s serial data streams by a pair Gigabit Transceiver ASICs (GBTx).
- The system architecture is shown in the schematic below.
- Streams are transmitted from the FECs over fibers to a PCIe based Common Readout Unit (C-RORC).
 - The FPGA engine on the readout unit filters and compresses data for transmission to a server via 100 Gb ethernet.
 - In addition to the uplink paths used for data and monitoring, the GBTx provides a fixed latency downlink path for trigger, control, and configuration of FEC components.
 - Components on the FECs are radiation tolerant.
- Going back a few slides, the first level of tiered storage in this case is hidden inside the Streaming Test Software.

FEC – JLab version

Test Setup for SAMPA evaluation

Front-end assembly consisting of FEC and test pulse card are shielded from external noise with a small Faraday cage. Input pulses are applied through the pair of coaxial cables on the left.

SAMPA Test Stand Roadmap

GEM Readout 2 (ACTIVE)

- Pedestal database for all FEC channels
- SAMPA threshold values for all channels based on pedestal database
- Study GEM pulse data (e.g. pulse shape, time resolution of correlated hits)
- Stream continuous GEM data over the network

TDIS

- Direct triggering of SAMPA chips (non-continuous mode)
- Readout prototype mTPC
- Construct new FECs with new SAMPA chip (80 ns shaping time)

Firmware upgrades (ACTIVE)

- Modify current readout card firmware to stream only hit data to PC memory
- Pulse feature extraction in FPGA

Integrate FELIX read out hardware/software

- Use FELIX software to configure FEC (GBTx, GBT-SCA, SAMPA)
- Modify FELIX firmware for GBT wide bus mode (no forward error correction)
- Powerful FPGA allows for more complex pulse feature extraction

Example SAMPA output

 Right - Cosmic ray pulse on a single strip of the GEM detector. SAMPA gain = 20 mV/fC. Signal represents about 22 fC of charge collected. ADC is 10 bits precision sampling at 20 MHz.

• Below – Linearity test using pulser.

Opportunistic testing - Streaming RO - CLAS12-Forward Tagger

•

—

Strategy for a quick test

- We have basic software used in the GEM/SAMPA tests.
 - -Already used to test of VTP readout of fADCs:
 - VTP sends data in streaming format using TCP to Router.
 - Router receives data and publishes data to subscribers (analyzers).
 - Open source ZeroMQ library used as the publish-subscribe data transport between router and subscriber.
 - -JANA2 plugin developed to receive data.
- Note :
 - The Router was meant for rapid prototyping not for streaming readout of a detector in beam conditions. What can we do here for a rapid prototype?

TriDAS - T.Chiarusi, C.Pellegrino

- TriDAS is an existing streaming DAQ developed for theKM3NeT neutrino detector.
 - It is not ideal for use in a large-scale NP experiment but "good enough" for this test.
- TriDAS installed on Hall-B cluster.
- Readout fADCs using VTP Ben
- VTP outputs in same streaming format used by previous JLab tests.
- Translate this format to one used by TriDAS
- Set up TriDAS to do a virtual triggers.
 - First goal TriDAS writes to disk.
- Develop a JANA plugin with goals to:
 - Implement a L2 in JANA

1

- Try online reconstruction.
- Store reconstructed data from JANA.

Can TriDAS do the job?

- Try feeding RG-A data, taken with CODA based triggered DAQ, into TriDAS and see what is needed to find the π^0 mass peak.
- Looks like TriDAS can do that and can likely manage the rates from this small detector.

Double-clusters (π^0) mass obtained from FT-Cal RG-A data fed to TRIDAS

Front-end setup - D.Abbott, F.Ameli, C.Cuevas, P. Musico, B.Raydo

- Front-end peak data rates ~150MBytes total (from both VTPs)
 - Less than current VTP limit: ~2 GByte/sec.
 - Less than theoretical max: 10 GBytes/sec
- Issues:
 - VTP 10GbE ethernet links showed stability problems.
 - TCP/IP library on VTP was found to be responsible.
 - Ben is working on fixing it.
 - Note: some other groups use UDP because of lack of a good and cheap TCP implementation on FPGAs.

Pretty much the same configuration FADC250 present throughout much of Hall B already

CODA run control - S.Boyarinov, B.Raydo

Hall B FT Calorimeter Streaming Test w/VTP – From Ben

- Used existing VXS crates with VTP and FADC250 modules
- VTP firmware update and 4x 10GbE connections was all that was needed to convert existing DAQ in the hall
- Plenty of issues to debug, but data was collected during a few short runs with beam and full calorimeter reporting
- Total data rate from VTPs was <300MB/s well within the link capacity
- VTP had consistent stability problem with the 10GbE TCP/IP stack. Expected to be addressed well before the streaming DAQ test in Hall D.

332 PbWO4 Forward Tagger Calorimeter

Streaming RO - CLAS12-FT online reconstruction

- FE setup:
 - FT-Cal only
 - TET (on fADC250)=15/50,
 - L1 threshold: 2000 (MeV)
 - L1 time window: 400 ns
- Tridas+JANA2+monitoring
- JANA2:
 - single-thread
 - L2 plugins: scaler (write all L1 to disk) + JANA2 (tag L1 events)
 - Online clustering enabled
 - Different runs taken with >=1 cluster, >=2 clusters, >=3 clusters

JANA2 + REC

N.Brei, D.Lawrence, M.Bondi', A.Celentano, C.Fanelli, S.Vallarino

Streaming summary

- Between mid-December and mid-February we went from next to nothing to a full in-beam demonstration of readout in streaming mode – holidays ate nearly two weeks of that. Impressive cooperation between JLab and INFN!! Thanks Marco!!
- What worked:
 - Data was taken in streaming mode and stored to disk.
 - -L1 and L2 triggering in software <u>after acquisition</u> worked.
 - Integration with existing CODA for Run Control and configuration worked.
 - JANA2 was able to reconstruct events and perform analysis.
- What wasn't so good:
 - Firmware TCP library is buggy and introduced instabilities.
 - Aggressive schedule and limited beam time meant that online JANA2 reconstruction was not used.
- What's next?
 - Hall-B was reconfigured for BONUS no opportunities for more beam time for a while.
 - Hall-B have detectors that use the fADC and VTP will try for tests there
 - Continue work on all of these projects and keep a consistent picture.